Skip to main content
Log in

Effect of the Structure of Imidazolium Ionic Liquids on the Electrical Conductivity and Processes of Ionic Association in Acetonitrile Solutions

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A study is performed of the electrical conductivity of a number of ionic liquids based on 1-alkyl-3-methylimidazolium quaternary salts with inorganic anions in acetonitrile. The Lee–Wheaton approach is used to calculate the ion association constants Ka, limiting molar electrical conductivity (λ0), and the Gibbs energy of association (ΔG) in solutions. It is shown that the nature and size of the anion has a decisive influence on the association of the studied ionic liquids. It is found that the limiting molar electrical conductivity of bromides is lower than that of hexafluorophosphates and tetrafluoroborates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. P. Hallett and T. Welton, Chem. Rev. 111, 3508 (2011). https://doi.org/10.1021/cr1003248

    Article  CAS  PubMed  Google Scholar 

  2. H. Zhao and S. V. Malhotra, Aldrichim. Acta 35, 75 (2002). https://doi.org/10.1155/2014/729842

    Article  CAS  Google Scholar 

  3. H. Olivier-Bourbigou, L. Magna, and D. Morvan, Appl. Catal., A 373, 1 (2010). https://doi.org/10.1016/j.apcata.2009.10.008

  4. R. Priambodo, T. C. Chen, M. C. Lu, et al., Energy Proc. 75, 84 (2015).https://doi.org/10.1016/j.egypro.2015.07.143

    Article  CAS  Google Scholar 

  5. H. J. Kim and Y. Shim, ACS Nano 3, 1693 (2009). https://doi.org/10.1021/nn900195b

    Article  CAS  PubMed  Google Scholar 

  6. M. Watanabe, H. Tokuda, S. Tsuzuki, et al., J. Phys. Chem. B 110, 19593 (2006). https://doi.org/10.1021/jp064159v

    Article  CAS  PubMed  Google Scholar 

  7. V. V. Chaban, I. V. Voroshylova, and O. N. Kalugin, Phys. Chem. Chem. Phys. 13, 7910 (2011). https://doi.org/10.1039/c0cp02778b

    Article  CAS  PubMed  Google Scholar 

  8. E. H. Duan, B. Guo, M. M. Zhang, et al., J. Chem. Eng. Data 55, 4340 (2010). https://doi.org/10.1021/je100361s

    Article  CAS  Google Scholar 

  9. A. P. Abbott and K. J. McKenzie, Phys. Chem. Chem. Phys. 8, 4265 (2006).https://doi.org/10.1039/B607329H

    Article  CAS  PubMed  Google Scholar 

  10. R. Kawano, H. Matsui, C. Matsuyama, et al., J. Photochem. Photobiol. A 164, 87 (2004). https://doi.org/10.1016/j.jphotochem.2003.12.019

    Article  CAS  Google Scholar 

  11. L. Grande, E. Paillard, G. T. Kim, et al., Int. J. Mol. Sci. 15, 8122 (2014). https://doi.org/10.3390/ijms15058122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. Sakaebe, H. Matsumoto, and K. Tatsumi, Electrochim. Acta 53, 1048 (2007). https://doi.org/10.1016/j.electacta.2007.02.054

    Article  CAS  Google Scholar 

  13. M. B. Foreiter, H. Q. N. Gunaratne, P. Nockemann, et al., Phys. Chem. Chem. Phys. 16, 1208 (2014). https://doi.org/10.1039/c3cp53472c

    Article  CAS  PubMed  Google Scholar 

  14. E. Duan, Y. Guan, B. Guo, et al., J. Mol. Liq. 178, 1 (2013). https://doi.org/10.1016/j.molliq.2012.10.026

    Article  CAS  Google Scholar 

  15. Q.-S. Liu, P.-P. Li, U. Welz-Biermann, et al., J. Chem. Thermodyn. 66, 88 (2013). https://doi.org/10.1016/j.jct.2013.06.008

    Article  CAS  Google Scholar 

  16. J. Vila, B. Fernández-Castro, E. C. Rilo, et al., Fluid Phase Equilib. 320, 1 (2012). https://doi.org/10.1016/j.fluid.2012.02.006

    Article  CAS  Google Scholar 

  17. J. Leys, C. S. P. Tripathi, C. Glorieux, et al., Phys. Chem. Chem. Phys. 16, 10548 (2014). https://doi.org/10.1039/C4CP00259H

    Article  CAS  PubMed  Google Scholar 

  18. O. E. Zhuravlev, L. I. Voronchikhina, and K. P. Gerasimova, Russ. J. Gen. Chem. 86, 2606 (2016).

    Article  CAS  Google Scholar 

  19. V. L. Chumak, M. R. Maksimyuk, T. V. Neshta, et al., Vost.-Evrop. Zh. Pered. Tekhnol. 62 (2/5), 59 (2013).

    CAS  Google Scholar 

  20. W. H. Lee and R. J. Wheaton, J. Chem. Soc., Faraday Trans. 74, 743 (1978). https://doi.org/10.1039/F29787400743

    Article  CAS  Google Scholar 

  21. W. H. Lee and R. J. Wheaton, J. Chem. Soc., Faraday Trans. 74, 1456 (1978). https://doi.org/10.1039/F29787401456

    Article  CAS  Google Scholar 

  22. W. H. Lee and R. J. Wheaton, J. Chem. Soc., Faraday Trans. 75, 1128 (1979). https://doi.org/10.1039/f29797501128

    Article  CAS  Google Scholar 

  23. A. D. Pethybridge and S. S. Taba, J. Chem. Soc., Faraday Trans. 76, 368 (1980). https://doi.org/10.1039/F19807600368

    Article  CAS  Google Scholar 

  24. J. Leys, M. Wubbenhorst, C. P. Menon, et al., J. Chem. Phys. 128, 64509 (2008). https://doi.org/10.1063/1.2827462

    Article  CAS  Google Scholar 

  25. J. Leys, R. N. Rajesh, P. C. Menon, et al., J. Chem. Phys. 133, 34503 (2010). https://doi.org/10.1063/1.3455892

    Article  CAS  Google Scholar 

  26. Y. Gao, L. Zhang, Y. Wang, et al., J. Phys. Chem. B 114, 2828 (2010). https://doi.org/10.1021/jp910528m

    Article  CAS  PubMed  Google Scholar 

  27. Iu. V. Voroshylova, E. A. Dakhova, V. V. Chaban, et al., Kharkov Univ. Bull. 895 (18), 159 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Zhuravlev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, O.E. Effect of the Structure of Imidazolium Ionic Liquids on the Electrical Conductivity and Processes of Ionic Association in Acetonitrile Solutions. Russ. J. Phys. Chem. 95, 298–302 (2021). https://doi.org/10.1134/S0036024421020308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421020308

Keywords:

Navigation