Skip to main content
Log in

Effect of the Structure of Dicationic Pyridinium Ionic Liquids on Processes of Ionic Association and the Electrical Conductivity of Their Solutions in Acetonitrile

  • COLLOID CHEMISTRY AND ELECTROCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

An investigation is performed of the electrical conductivity of a number of dicationic ionic liquids based on 3‑methylpyridinium and inorganic anions in acetonitrile. The Lee–Wheaton procedure is used to calculate constants Ka of ion association, the limiting molar electrical conductivity (λ0), and the Gibbs energy of association (ΔG) in solutions. It is shown that the nature and size of the anion are a key influence on the association of the studied ionic liquids. It is established that dicationic 3-methylpyridinium salts with bromide anions are more associated in solution than corresponding hexafluorophosphates or tetrafluoroborates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. P. Hallett and T. Welton, Chem. Rev. 111, 3508 (2011). https://www.doi.org/10.1021/cr1003248

    Article  CAS  Google Scholar 

  2. T. Torimoto, T. Tsuda, K. I. Okazaki, and S. Kuwabata, Adv. Mater. 22, 1196 (2010). https://www.doi.org/10.5772/52597

    Article  CAS  Google Scholar 

  3. D. D. Patel and J. M. Lee, Chem. Rec. 12, 329 (2012). https://www.doi.org/10.1002/tcr.201100036

    Article  CAS  Google Scholar 

  4. A. P. Abbott and K. J. McKenzie, Phys. Chem. Chem. Phys. 8, 4265 (2006). https://www.doi.org/10.1039/B607329H

    Article  CAS  Google Scholar 

  5. L. Gre, E. Paillard, G. T. Kim, et al., Int. J. Mol. Sci. 15, 8122 (2014). https://www.doi.org/10.3390/ijms15058122

    Article  Google Scholar 

  6. H. Sakaebe, H. Matsumoto, and K. Tatsumi, Electrochim. Acta 53, 1048 (2007). https://www.doi.org/10.1016/j.electacta.2007.02.054

    Article  CAS  Google Scholar 

  7. O. N. Kalugin, Iu. V. Voroshylova, A. V. Riabchunova, et al., Electrochim. Acta 105, 188 (2013). https://doi.org/10.1016/j.electacta.2013.04.140

    Article  CAS  Google Scholar 

  8. O. E. Zhuravlev, L. I. Voronchikhina, and K. P. Gerasimova, Russ. J. Gen. Chem. 86, 2606 (2016). https://www.doi.org/10.1134/S1070363216120069

    Article  CAS  Google Scholar 

  9. V. L. Chumak, M. R. Maksimyuk, T. V. Neshta, et al., Vost.-Evrop. Zh. Pered. Tekhnol. 62 (2/5), 59 (2013).

    CAS  Google Scholar 

  10. W. H. Lee and R. J. Wheaton, J. Chem. Soc. Faraday Trans. II 74, 743 (1978). https://www.doi.org/10.1039/F29787400743

    Article  CAS  Google Scholar 

  11. W. H. Lee, and R. J. Wheaton, J. Chem. Soc. Faraday Trans. II 74, 1456 (1978). https://www.doi.org/10.1039/F29787401456

    Article  CAS  Google Scholar 

  12. W. H. Lee, and R. J. Wheaton, J. Chem. Soc. Faraday Trans. II 75, 1128 (1979). https://www.doi.org/10.1039/f29797501128

    Article  CAS  Google Scholar 

  13. A. D. Pethybridge and S. S. Taba, J. Chem. Soc. Faraday Trans. I 76, 368 (1980). https://www.doi.org/10.1039/F19807600368

    Article  CAS  Google Scholar 

  14. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993). https://www.doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  15. A. A. Granovsky, PC GAMESS/Firefly version 8.1. http://classic.chem.msu.su/gran/gamess/index.html.

  16. N. V. Sastry, N. M. Vaghela, P. M. Macwan, et al., J. Colloid Interface Sci. 137, 52 (2012). https://www.doi.org/10.1016/j.jcis.2011.12.077

    Article  Google Scholar 

  17. R. Jan, G. M. Rather, and M. A. Bhat, J. Solution Chem. 42, 738 (2013). https://www.doi.org/10.1007/s10953-013-9999-4

    Article  CAS  Google Scholar 

  18. C. G. Hanke, N. A. Atamas, and R. M. Lynden-Bell, Green Chem. 4, 107 (2002). https://doi.org/10.1039/b109179b

    Article  CAS  Google Scholar 

  19. O. E. Zhuravlev, Russ. J. Phys. Chem. A 95, 298 (2021). https://www.doi.org/10.1134/S0036024421020308

  20. B. Ramsauer, M. M. Meier, R. Neueder, et al., J. Acta Chim. Slov. 56, 30 (2009).

    CAS  Google Scholar 

  21. D. Das, B. Das, and D. K. Hazra, J. Solut. Chem. 32, 77 (2003). https://www.doi.org/10.1023/A:1022648916138

    Article  CAS  Google Scholar 

  22. Y. Gao, L. Zhang, Y. Wang, et al., J. Phys. Chem. B 114, 2828 (2010). https://www.doi.org/10.1021/jp910528m

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Zhuravlev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, O.E. Effect of the Structure of Dicationic Pyridinium Ionic Liquids on Processes of Ionic Association and the Electrical Conductivity of Their Solutions in Acetonitrile. Russ. J. Phys. Chem. 95, 2503–2508 (2021). https://doi.org/10.1134/S0036024421120244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421120244

Keywords:

Navigation