Skip to main content
Log in

Studying the Atomic Layer Deposition of Molybdenum Oxide and Titanium–Molybdenum Oxide Films Using Quartz Crystal Microbalance

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A study is performed of the thermal atomic layer deposition (ALD) of molybdenum oxide (MoOx) films using MoOCl4 and H2O and titanium–molybdenum oxide (TixMoyOz) thin films using TiCl4, MoOCl4, and H2O. Film growth is investigated via in situ quartz crystal microbalance (QCM) in the 115 to 180°C range of temperatures. ALD processes are considered for TixMoyOz films with different ratios of TiCl4–H2O and MoOCl4–H2O subcycles in a supercycle. The linear growth of a film upon an increase in the number of ALD cycles is in all cases established. The surface reactions of halides and H2O are shown to be of a self-limiting. The QCM data show the considered surface chemistry can be used for depositing thin MoOx and TixMoyOz films. Fields of potential application of these thin films a catalysis, electrochromic devices, lithium-ion batteries, antibacterial coatings and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. W. Ren, Zh. Ai, F. Jia, et al., Appl. Catal. 69, 138 (2007). https://doi.org/10.1016/j.apcatb.2006.06.015

    Article  CAS  Google Scholar 

  2. A. Fujishima and X. T. Zhang, C. R. Chim. 9, 750 (2006). https://doi.org/10.1016/j.crci.2005.02.055

    Article  CAS  Google Scholar 

  3. R. Daghrir, P. Drogui, and D. Robert, Ind. Eng. Chem. Res. 52, 3581 (2013). https://doi.org/10.1021/ie303468t

    Article  CAS  Google Scholar 

  4. C. W. Dunnill, A. Kafizas, and I. P. Parkin, Chem. Vap. Dep. 18 (4–6), 89 (2012). https://doi.org/10.1002/cvde.201200048

    Article  CAS  Google Scholar 

  5. A. Vahl, S. Veziroglu, B. Henkel, et al., Materials 12, 2840 (2019). https://doi.org/10.3390/ma12172840

    Article  CAS  PubMed Central  Google Scholar 

  6. F. S. Al Mashary, J. F. Felix, S. O. Ferreira, et al., MSEB 259, 114578 (2020). https://doi.org/10.1016/j.mseb.2020.114578

  7. A. A. Malygin, in Proceedings of the 3rd International Seminar of Atomic Layer Deposition, Russia, 2021 (2021), p. 13.

  8. S. M. George, Chem. Rev. 110, 111 (2010). https://doi.org/10.1021/cr900056b

    Article  CAS  PubMed  Google Scholar 

  9. R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005). https://doi.org/10.1063/1.1940727

  10. A. I. Abdulagatov, A. M. Maksumova, D. K. Palchaev, M. Kh. Rabadanov, and I. M. Abdulagatov, Russ. J. Appl. Chem. 94, 890 (2021). https://doi.org/10.1134/S1070427221070053

    Article  CAS  Google Scholar 

  11. Y. Xie, X. Zhao, Y. Chen, et al., J. Solid State Chem. 180, 3576 (2007). https://doi.org/10.1016/j.jssc.2007.10.023

    Article  CAS  Google Scholar 

  12. L. Tian, A. Soum-Glaude, F. Volpi, et al., J. Vac. Sci. Technol. A 33, 01A141-1 (2015). https://doi.org/10.1116/1.4904025

  13. A. Lee, J. A. Libera, R. Z. Waldman, et al., Adv. Sustainable Syst. 1, 1600041 (2017). https://doi.org/10.1002/adsu.201600041

  14. V. Pore, M. Heikkilä, M. Ritala, et al., J. Photochem. Photobiol. 177, 68 (2006). https://doi.org/10.1016/j.jphotochem.2005.05.013

    Article  CAS  Google Scholar 

  15. J. P. Niemela, H. Yamauchi, and M. Karppinen, Thin Solid Films 551, 19 (2014). https://doi.org/10.1016/j.tsf.2013.11.043

    Article  CAS  Google Scholar 

  16. V. Pore, M. Ritala, M. Leskelä, et al., J. Mater. Chem. 17, 1361 (2007). https://doi.org/10.1039/B617307A

    Article  CAS  Google Scholar 

  17. C. Y. Su, L. Ch. Wang, W. S. Liu, et al., ACS Appl. Mater. Interfaces 10, 33287 (2018). https://doi.org/10.1021/acsami.8b12299

    Article  CAS  PubMed  Google Scholar 

  18. V. Pore, T. Kivelä, M. Ritala, et al., Dalton Trans. 45, 6467 (2008). https://doi.org/10.1039/B809953G

    Article  Google Scholar 

  19. J. H. Choi, S. H. Kwon, Y. K. Jeong, et al., J. Electrochem. Soc. 158, B749 (2011). https://doi.org/10.1149/1.3582765

    Article  CAS  Google Scholar 

  20. J.-G. Huang, X-T. Guo, B. Wang, et al., J. Spectrosc. 2015, 681850 (2015). https://doi.org/10.1155/2015/681850

  21. H. Liu, T. Lv, Ch. Zhu, and Zh. Zhu, Sol. Energy Mater. Sol. Cells 153, 1 (2016). https://doi.org/10.1016/j.solmat.2016.04.013

    Article  CAS  Google Scholar 

  22. J. Zhang, T. Huang, L. Zhang, and A. Yu, J. Phys. Chem. C 118, 25300 (2014). https://doi.org/10.1021/jp506401q

    Article  CAS  Google Scholar 

  23. K. Galatsis, Y. X. Li, W. Wlodarski, et al., Sens. Actuators, B 3, 276 (2002).

    Article  Google Scholar 

  24. S. I. Kol’tsov, Zh. Prikl. Khim. 42, 1023 (1969).

    Google Scholar 

  25. P. Dill, F. Pachel, C. Militzer, et al., J. Vac. Sci. Technol. A 39, 052406 (2021). https://doi.org/10.1116/6.0001193

  26. L. Kavan, N. Tétreault, Th. Moehl, and M. Graetzel, J. Phys. Chem. C 118, 16408 (2014). https://doi.org/10.1021/jp030790+

    Article  CAS  Google Scholar 

  27. X. Qi, Yu. Jiang, C. Detavernier, et al., J. Appl. Phys. 102, 083521 (2007). https://doi.org/10.1063/1.2798384

  28. J. P. Niemela, G. Marin, and M. Karppinen, Semicond. Sci. Technol. 32, 093005 (2017). https://doi.org/10.1088/1361-6641/aa78ce

  29. M. Diskus, O. Nilsen, and H. Fjellvå, J. Mater. Chem. 21, 705 (2011). https://doi.org/10.1039/C0JM01099E

    Article  CAS  Google Scholar 

  30. T. L. Drake and P. C. Stair, J. Vac. Sci. Technol. A 34 (2016). https://doi.org/10.1116/1.4959532

  31. T. Jurca, A. W. Peters, A. R. Mouat, et al., Dalton Trans. 46, 1172 (2017). https://doi.org/10.1039/C6DT03952A

    Article  CAS  PubMed  Google Scholar 

  32. M. F. J. Vos, M. Bacco, N. F. W. Thissen, et al., J. Vac. Sci. Technol. A 34, 01A103 (2016). https://doi.org/10.1116/1.4930161

  33. J. N. Kvalvik, B. Jon, P.-A. Hansen, and O. Nilsen, J. Vac. Sci. Technol. A 38, 042406 (2020). https://doi.org/10.1116/6.0000219

  34. M. Mattinen, P. J. King, L. Khriachtchev, et al., Mater. Today Chem. 9, 17 (2018). https://doi.org/10.1016/j.mtchem.2018.04.005

    Article  CAS  Google Scholar 

  35. R. Aidan, A. R. Mouat, A. U. Mane, et al., Chem. Mater. 28, 1907 (2016). https://doi.org/10.1021/acs.chemmater.6b00248

    Article  CAS  Google Scholar 

  36. C. E. Nanayakkara, A. Vega, G. Liu, et al., Chem. Mater. 28, 8591 (2016). https://doi.org/10.1021/acsami.1c06204

    Article  CAS  Google Scholar 

  37. T. Fransen, O. Meer, P. Mars, et al., J. Phys. Chem. 80, 2103 (1976). https://doi.org/10.1021/j100560a010

    Article  CAS  Google Scholar 

  38. L. Lietti, I. Nova, G. Ramis, et al., J. Catal. 187, 419 (1999). https://doi.org/10.1006/jcat.1999.2603

    Article  CAS  Google Scholar 

  39. A. Marciel, M. Graca, A. Bastos, et al., Mater. 14, 821 (2021). https://doi.org/10.3390/ma14040821

    Article  CAS  Google Scholar 

  40. U. K. Sen and S. Mitra, RSC Adv. 2, 11123 (2012). https://doi.org/10.1039/C2RA21373G

    Article  CAS  Google Scholar 

  41. V. Guidi, G. Cardinali, L. Dori, et al., Sens. Actuators, B 49, 88 (1998). https://doi.org/10.1016/S0925-4005(98)00039-2

    Article  CAS  Google Scholar 

  42. Sh. Shahram, V. O. Daniel, T. Fey, et al., Mater. Sci. Eng. C 58, 1064 (2016). https://doi.org/10.1016/j.msec.2015.09.069

    Article  CAS  Google Scholar 

  43. V. Pershina and B. Fricke, Russ. J. Phys. Chem. 99, 144 (1995).

    CAS  Google Scholar 

  44. V. Pershina and B. Fricke, Russ. J. Phys. Chem. 100, 8748 (1996).

    CAS  Google Scholar 

  45. CRC Handbook of Chemistry and Physics, 102nd ed. (CRC, Taylor and Francis Group, 2021–2022).

  46. J. W. Elam, M. D. Groner, and S. M. George, Rev. Sci. Instrum. 73, 2981 (2002). https://doi.org/10.1063/1.1490410

    Article  CAS  Google Scholar 

  47. A. I. Kutchiev, Cand. Sci. (Chem.) Dissertation (St. Petersburg, 2006).

  48. R. A. Wind and S. M. George, J. Phys. Chem. A 114, 1281 (2010). https://doi.org/10.1021/jp9049268

    Article  CAS  PubMed  Google Scholar 

  49. R. W. Wind, F. H. Fabreguette, Z. A. Sechrist, et al., J. Appl. Phys. 105, 074309 (2009). https://doi.org/10.1063/1.3103254

  50. A. A. Malygin, A. N. Volkova, S. I. Kol’tsov, and V. B. Alekskovskii, Russ. J. Gen. Chem. 42, 2373 (1972).

    CAS  Google Scholar 

  51. A. A. Malygin, A. N. Volkova, S. I. Kol’tsov, and V. B. Alekskovskii, Russ. J. Gen. Chem. 43, 1436 (1973).

    CAS  Google Scholar 

  52. A. A. Malygin, Russ. J. Gen. Chem. 72, 575 (2002).

    Article  CAS  Google Scholar 

  53. A. I. Efimov, L. P. Belokurova, I. V. Vasil’kova, and V. P. Chechev, Properties of Inorganic Compounds, The Handbook (Khimiya, Leningrad, 1983), p. 392 [in Russian].

    Google Scholar 

  54. A. J. M. Mackus, J. R. Schneider, C. MacIsaac, et al., Chem. Mater. 31, 1142 (2019). https://doi.org/10.1021/acs.chemmater.8b02878

    Article  CAS  Google Scholar 

  55. S. M. George, Acc. Chem. Res. 53, 1151 (2020). https://doi.org/10.1021/cr900056b

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Science and Higher Education as part of State Task no. FZNZ-2020-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksumova, A.M., Abdulagatov, I.M., Palchaev, D.K. et al. Studying the Atomic Layer Deposition of Molybdenum Oxide and Titanium–Molybdenum Oxide Films Using Quartz Crystal Microbalance. Russ. J. Phys. Chem. 96, 2206–2214 (2022). https://doi.org/10.1134/S0036024422100181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422100181

Keywords:

Navigation