Skip to main content
Log in

An Investigation of the Properties of Binary and Ternary Mixtures Containing Morpholine

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The densities of binary and ternary mixtures of morpholine with dimethyl sulfoxide and N-methyl-2-pyrrolidone are experimentally studied at 293.15 K and atmospheric pressure, density deviations and excess molar volumes of mixtures are calculated from experimental data, concentration dependences for binary systems are described by the Redlich–Kister polynomial, and density isoline diagrams of the morpholine–dimethyl sulfoxide–N-methyl-2-pyrrolidone system are plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. A. A. Gaile, V. V. Somov, and G. D. Zalishchevskii, Morpholine and Its Derivatives. Preparation, Properties, and Use As a Selective Solvent (Khimizdat, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  2. B. Marrufo, M. Sanchotello, and S. Loras, Fluid Phase Equilib. 296, 178 (2010). https://doi.org/10.1016/j.fluid.2010.04.008

    Article  CAS  Google Scholar 

  3. J. Coca and J. J. Pis, J. Chem. Eng. Data 24, 103 (1979). https://doi.org/10.1021/je60081a017

  4. V. G. Kozin and A. A. Mukhamadiev, Russ. J. Appl. Chem. 75, 1061 (2002). https://doi.org/10.1023/A:1020791608247

    Article  CAS  Google Scholar 

  5. V. G. Kozin and A. A. Mukhamadiev, Russ. J. Appl. Chem. 74, 1289 (2001).

    Article  CAS  Google Scholar 

  6. G. Parthipan and T. Thenappan, J. Mol. Liq. 138, 20 (2008). https://doi.org/10.1016/j.molliq.2007.06.010

    Article  CAS  Google Scholar 

  7. G. V. Rama Rao, A. Viswanatha Sarma, and G. Rambabu, Ind. J. Pure Appl. Phys. 42, 820 (2004).

    Google Scholar 

  8. G. V. Rama Rao, A. Viswanatha Sarma, D. Ramachandra, and G. Rambabu, Indian J. Chem. A 46, 1972 (2007).

    Google Scholar 

  9. A. R. Venis and X. R. Rajkumar, Orient. J. Chem. 27, 105 (2011).

    CAS  Google Scholar 

  10. M. Makavana and S. Sharma, J. Mol. Liq. 222, 535 (2016). https://doi.org/10.1016/j.molliq.2016.07.045

    Article  CAS  Google Scholar 

  11. K. Umasivakami, S. Vaideeswaran, and A. R. Venis, J. Serb. Chem. Soc. 83, 1131 (2018). https://doi.org/10.2298/JSC170829056U

    Article  CAS  Google Scholar 

  12. B. K. Gil, H. Sharma, and V. R. Rattan, Int. J. Chem. Mol. Eng. 10, 325 (2016).

    Google Scholar 

  13. S. Sharma and M. Makavana, Fluid Phase Equilib. 375, 219 (2014). https://doi.org/10.1016/j.fluid.2014.05.008

    Article  CAS  Google Scholar 

  14. A. M. Awwad, E. I. Allos, and S. R. Salman, J. Chem. Eng. Data 33, 265 (1988). https://doi.org/10.1021/je00053a013

  15. A. I. Abramovich and L. V. Lanshina, Russ. J. Phys. Chem. A 84, 1147 (2010).

    Article  CAS  Google Scholar 

  16. L. V. Lanshina and A. I. Abramovich, Russ. J. Phys. Chem. A 81, 187 (2007).

    Article  CAS  Google Scholar 

  17. A. Minevich and Y. Marcus, J. Chem. Eng. Data 48, 208 (2003). https://doi.org/10.1021/je020191g

  18. Y. Maham, M. Boivineau, and A. E. Mather, J. Chem. Thermodyn. 33, 1725 (2001). https://doi.org/10.1006/jcht.2001.0885

  19. A. Satei and A. Azim Soltanabadi, J. Mol. Liq. 348, 118417 (2022). https://doi.org/10.1016/j.molliq.2021.118417

  20. R. Mirzaee, A. Soltanabadi, S. Ranjbar, and Z. Fakhri, Struct. Chem. 32, 2319 (2021). https://doi.org/10.1007/s11224-021-01808-9

    Article  CAS  Google Scholar 

  21. A. Kumari, V. Aniya, N. V. Rane, et al., Thermochim. Acta 649, 41 (2017). https://doi.org/10.1016/j.tca.2016.12.010

    Article  CAS  Google Scholar 

  22. S.-J. Park, K. Fischer, and J. Gmehling, J. Chem. Eng. Data 39, 859 (1994). https://doi.org/10.1021/je00016a050

  23. Z. Fakhri and M. T. Azad, J. Mol. Liq. 302, 112584 (2020). https://doi.org/10.1016/j.molliq.2020.112584

  24. D. Bala, M. Gowrisankar, and D. Ramachandran, Int. J. Ambient Energy 1, 1 (2020). https://doi.org/10.1080/01430750.2020.1852112

    Article  CAS  Google Scholar 

  25. V. G. Kozin and A. A. Mukhamadiev, Pet. Chem. 42, 280 (2002).

    Google Scholar 

  26. V. I. Zhuchkov, V. M. Raeva, and A. K. Frolkova, Chem. Data Col. 38, 100840 (2022). https://doi.org/10.1016/j.cdc.2022.100840

  27. A.-M. Simoiu and A. Iacob, J. Therm. Anal. Calorim. 110, 329 (2012). https://doi.org/10.1007/s10973-012-2345-z

    Article  CAS  Google Scholar 

  28. H. B. Friedman, A. Barnard, W. B. Doe, et al., J. Am. Chem. Soc. 62, 2366 (1940). https://doi.org/10.1021/ja01866a029

  29. N. V. Živkovíc, S. S. Šerbanovíc, M. Lj. Kijevčanin, and E. M. Živkovíc, J. Chem. Eng. Data 58, 3332 (2013). https://doi.org/10.1021/je400486p

    Article  CAS  Google Scholar 

  30. A. García-Abuín, D. Gomez-Díaz, M. D. LaRubia, et al., J. Chem. Eng. Data 56, 2904 (2011). https://doi.org/10.1021/je200121f

    Article  CAS  Google Scholar 

  31. A. García-Abuín, D. Gomez-Díaz, M. D. la Rubia, and J. M. Navaza, J. Chem. Eng. Data 56, 646 (2011). https://doi.org/10.1021/je100967k

    Article  CAS  Google Scholar 

  32. A. B. López, A. García-Abuín, D. Gómez-Díaz, et al., J. Chem. Thermodyn. 61, 1 (2013). https://doi.org/10.1016/j.jct.2013.01.020

    Article  CAS  Google Scholar 

  33. O. Ciocirlan and O. Iulian, J. Serb. Chem. Soc. 74, 317 (2009). https://doi.org/10.2298/JSC0903317C

  34. Harmandeep Singh Gill and V. K. Rattan, J. Thermodyn., No. 3, 607052 (2014). https://doi.org/10.1155/2014/607052

  35. N. G. Tsierkezos, A. E. Kelarakis, and M. M. Palaiologou, J. Chem. Eng. Data 45, 395 (2000). https://doi.org/10.1021/je990271t

    Article  CAS  Google Scholar 

  36. O. Ciocirlan and O. Iulian, J. Serb. Chem. Soc. 73, 73 (2008). https://doi.org/10.2298/JSC0801073C

  37. D. Bala, M. Gowrisankar, D. Ramachandran, et al., Int. J. Ambient Energy 41 (2020). https://doi.org/10.1080/01430750.2020.1852112

  38. X. Wang, F. Yang, Y. Gao, and Z. Liu, J. Chem. Thermodyn. 57, 145 (2013). https://doi.org/10.1016/j.jct.2012.08.021

    Article  CAS  Google Scholar 

  39. M. Ramos-Estrada, I. Y. López-Cortés, G. A. Iglesias-Silva, and F. Pérez-Villaseñor, J. Chem. Eng. Data 63, 4425 (2018). https://doi.org/10.1021/acs.jced.8b00537

    Article  CAS  Google Scholar 

  40. A. R. Venis and X. R. Rajkumar, Asian J. Chem. 26, 4711 (2014). https://doi.org/10.14233/ajchem.2014.16182

  41. M. M. Budeanu and V. Dumitrescu, Appl. Sci. 12, 116 (2022). https://doi.org/10.3390/app12010116

    Article  CAS  Google Scholar 

  42. V. B. Terent’eva, B. V. Peshnev, and A. I. Nikolaev, Fine Chem. Techn. 16, 390 (2021). https://doi.org/10.32362/2410-6593-2021-16-5-390-398

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation, state order no. 0706-2020-0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Raeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuchkov, V.I., Raeva, V.M. & Ul’yanova, A.A. An Investigation of the Properties of Binary and Ternary Mixtures Containing Morpholine. Russ. J. Phys. Chem. 97, 1159–1167 (2023). https://doi.org/10.1134/S0036024423060341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423060341

Keywords:

Navigation