Skip to main content
Log in

Differential Scanning Calorimetry Determination of the Hydrogen Solubility in E110opt and E635 Zirconium Alloys

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The hydride dissolution and formation temperatures in domestic zirconium alloys E110opt and E635 are determined by differential scanning calorimetry for samples with a hydrogen content of 50–700 ppm. Solvus curves and van’t Hoff dependences are constructed for a zirconium alloy–hydrogen system, and the specific enthalpies of hydride dissolution and formation in the E635 and E110opt alloys are calculated. The enthalpies of hydride formation and dissolution in the E110opt alloy is found to be higher than in the E635 alloy and foreign zirconium alloys, and the E635 alloy is comparable with a foreign Zircaloy-4 alloy in this parameter. The temperature hysteresis in the E635 alloy is found to be smaller than in other alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. From here on, the components are given in wt %.

REFERENCES

  1. D. Duglas, Physical Metallurgy of Zirconium (Atomizdat, Moscow, 1975).

    Google Scholar 

  2. A. S. Zaimovskii, A. V. Nikulina, and N. G. Reshetnikov, Zirconium Alloys in Nuclear Power Engineering (Energoizdat, Moscow, 1981).

    Google Scholar 

  3. J. J. Kearns, “Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4,” J. Nucl. Mater. 22 (3), 292–303 (1967).

    Article  CAS  Google Scholar 

  4. C. E. Ells, “Hydride precipitates in zirconium alloys: a review,” J. Nucl. Mater. 28 (2), 129–151 (1968).

    Article  CAS  Google Scholar 

  5. M. P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components (Springer, 2012).

    Book  Google Scholar 

  6. W. Qin, J. A. Szpunar, and J. Kozinski, “Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: a theoretical analysis,” Acta Mater. 60 (12), 4845–4855 (2012).

    Article  CAS  Google Scholar 

  7. S. A. Nikulin et al., “Effect of low hydrogenation on the low-cycle fatigue of zirconium alloy,” Int. J. Fatigue 111, 1–6 (2018).

    Article  CAS  Google Scholar 

  8. E. C. W. Perryman, “Pickering pressure tube cracking experience,” Nucl. Energy 17 (2), 95–105 (1977).

    Google Scholar 

  9. P. A. Platonov, “The study of the cause of cracking in zirconium alloy fuel channel tubes,” in Proceedings of Eighth International Symposium AECL on Zirconium in the Nuclear Industry (1988), Rep. RC 87.

  10. Y. S. Kim, “Precipitation of reoriented hydrides and textural change of α-zirconium grains during delayed hydride cracking of Zr–2.5% Nb pressure tube,” J. Nucl. Mater. 297 (3), 292–302 (2001).

    Article  CAS  Google Scholar 

  11. M. Isaenkova, Y. Perlovich, and V. Fesenko, “Texture aspects of delayed hydride cracking in products from Zr-based alloys,” Appl. Texture Anal. Ceram. Trans. 201, 189–196 (2008).

    Google Scholar 

  12. R. A. Kurskii et al., “Factors influencing the reorientation of hydrides in non-irradiated shell tubes made of E110 alloy during long-term dry storage of spent nuclear fuel,” Nucl. Phys. Eng. 84 (10), 1665–1671 (2021).

    Google Scholar 

  13. N. A. P. Kiran Kumar and J. A. Szpunar, “EBSD studies on microstructure and crystallographic orientation of δ-hydrides in Zircaloy-4, Zr–1% Nb and Zr–2.5% Nb,” Mater. Sci. Eng. A 528 (21), 6366–6374 (2011).

    Article  CAS  Google Scholar 

  14. M. Grosse et al., “Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation,” Oxid. Met. 70 (3–4), 149–162 (2008).

  15. A. T. Motta, “Hydrogen in zirconium alloys: a review,” J. Nucl. Mater. 518, 440–460 (2019).

    Article  CAS  Google Scholar 

  16. J. P. Giroldi et al., “Hydrogen terminal solid solubility determinations in Zr–2.5Nb pressure tube microstructure in an extended concentration range,” J. Alloys Compd. 474 (1–2), 140–146 (2009).

  17. J. Kim and Y. Kim, “Effect of thermal history on the terminal solid solubility of hydrogen in Zircaloy-4,” Int. J. Hydrogen Energy 39 (29), 16442–16449 (2014).

    Article  CAS  Google Scholar 

  18. S. A. Parodi et al., “Study of variables that affect hydrogen solubility in α + β-Zr-alloys,” J. Nucl. Mater. 477, 305–317 (2016).

    Article  CAS  Google Scholar 

  19. M. Ito et al., “Effect of Nb addition on the terminal solid solubility of hydrogen for Zr and Zircaloy-4,” J. Alloys Compd. 447, 451–454 (2007).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation, project no. 075-15-2021-1352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Petrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenishev, A.V., Petrov, M.I., Isaenkova, M.G. et al. Differential Scanning Calorimetry Determination of the Hydrogen Solubility in E110opt and E635 Zirconium Alloys. Russ. Metall. 2022, 1427–1433 (2022). https://doi.org/10.1134/S0036029522110131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522110131

Keywords:

Navigation