Skip to main content
Log in

Molecular dynamics estimates for the thermodynamic properties of the Fe–S liquid cores of the Moon, Io, Europa, and Ganymede

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

A molecular dynamics (MD) simulation is performed for the physical and chemical properties of solid and liquid Fe–S solutions using the embedded atom model (EAM) potential as applied to the internal structure of the Moon, Io, Europa, and Ganymede under the assumption that the satellites' cores can be described by a two-component iron–sulfur system. Calculated results are presented for the thermodynamic parameters including the caloric, thermal, and elastic properties (specific heat, thermal expansion, Grüneisen parameter, density, compression module, velocity of sound, and adiabatic gradient) of the Fe–S solutions at sulfur concentrations of 0–18 at %, temperatures of up to 2500 K, and pressures of up to 14 GPa. The velocity of sound, which increases as pressure rises, is weakly dependent on sulfur concentration and temperature. For the Moon’s outer Fe–S core (~5 GPa/2000 K), which contains 6–16 at % (3.5–10 wt %) sulfur, the density and the velocity of sound are estimated at 6.3–7.0 g/cm3 and 4000 ± 50 m/s, respectively. The MD calculations are compared with the interpretation of the Apollo observations (Weber et al., 2011) to show a good consistency of the velocity of P-waves in the Moon’s liquid core whereas the thermodynamic density of the Fe–S core is not consistent with the seismic models with ρ = 5.1–5.2 g/cm3 (Garcia et al., 2011; Weber et al., 2011). The revision the density values for the core leads to the revision of its size and mass. At sulfur concentrations of 3.5–10 wt %, the density of the Fe–S melt is 20–30% higher that the seismic density of the core. Therefore, the most likely radius of the Moon’s outer core must be less than 330 km (Weber et al., 2011) because, provided that the constraint on the Moon’s mass and moment of inertia is satisfied, an increase in the density of the core must lead to a reduction of its radius. For Jupiter’s Galilean moons Io, Europa, and Ganymede, constraints are obtained on the size, density, and sound velocity of the Fe–S liquid cores. The geophysical and geochemical characteristics of the internal structure of the Moon and Jupiter’s moons are compared. The calculations of the adiabatic gradient at the PT conditions for the Fe–S cores of the Moon, Io, Europa, and Ganymede suggest the top-down crystallization of the core (Fe-snow scenario).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfé, D. and Gillan, M.J., First principles simulations of liquid Fe-S under Earth’s core conditions, Phys. Rev. B, 1998, vol. 58, pp. 8248–8256.

    Article  ADS  Google Scholar 

  • Anderson, J.D., Sjogren, W.L., and Schubert, G., Galileo gravity results and the internal structure of Io, Science, 1996a, vol. 272, pp. 709–712.

    Article  ADS  Google Scholar 

  • Anderson, J.D., Lau, E.L., Sjogren, W.L., Schunert, G., and Moore, W.B., Gravitational constraints on the internal structure of Ganymede, Nature, 1996b, vol. 384, pp. 541–543.

    Article  ADS  Google Scholar 

  • Antonangeli, D., Morard, G., Schmerr, N.C., Komabayashi, T., Krisch, M., Fiquet, G., and Fei, Y., Toward a mineral physics reference model for the Moon’s core, Proc. Nat. Acad. Sci. U.S.A., 2015, vol. 112, pp. 3916–3919.

    Article  ADS  Google Scholar 

  • Badro, J., Côté, A.S., and Brodholt, J.P., A seismologically consistent compositional model of Earth’s core, Proc. Nat. Acad. Sci. U.S.A., 2014, vol. 111, pp. 7542–7545.

    Article  ADS  Google Scholar 

  • Balog, P.S., Secco, R.A., Rubie, D.C., and Frost, D.J., Equation of state of liquid Fe-10 wt. % S: implications for the metallic cores of planetary bodies, J. Geophys. Res. B, 2003, vol. 108, no. 2, p. 2124. doi:10.1029/2001JB001646.

    ADS  Google Scholar 

  • Belashchenko, D.K., Embedded atom model application to liquid metals. Liquid iron, Zh. Fiz. Khim., 2006, vol. 80, no. 5, pp. 872–883.

    Google Scholar 

  • Belashchenko, D.K., Kuskov, O.L., and Ostrovskii, O.I., Embedded atom model application to solid solutions of Fe-S system, Inorganic Mater., 2007, vol. 43, no. 9, pp. 1113–1125.

    Article  Google Scholar 

  • Belashchenko, D.K. and Ostrovskii, O.I., Molecular dynamics simulation of shock compression of metals: iron and iron-sulfur solutions, Russ. J. Phys. Chem. A, 2011, vol. 85, no. 6, p. 967.

    Article  Google Scholar 

  • Belashchenko, D.K., Computer simulation for liquid metals, Usp. Fiz. Nauk, 2013, vol. 183, no. 12, pp. 1281–1322.

    Article  Google Scholar 

  • Belashchenko, D.K., Estimation of the thermodynamic characteristics of the Earth’s core using the embedded atom model, Geochemistry, 2014, vol. 52, no. 6, p. 456.

    Article  Google Scholar 

  • Belashchenko, D.K. and Kuskov, O.L., Molecular–dynamic modeling of thermodynamic properties of the lunar Fe–S core, Doklady Earth Sci., 2015, vol. 460, no. 1, pp. 37–40.

    Article  ADS  Google Scholar 

  • Belonoshko, A.B. and Ahuja, R., Embedded-atom molecular dynamics study of iron melting, Phys. Earth Planet. Int., 1997, vol. 102, pp. 171–184. Doi:10.1016/S00319201(97)00014-9

    Article  ADS  Google Scholar 

  • Buono, A.S. and Walker, D., The Fe-rich liquidus in the FeFeS system from 1 bar to 10 GPa, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 2072–2087.

    Article  ADS  Google Scholar 

  • Canup, R.M. and Ward, W.R., Formation of the Galilean satellites: conditions of accretion, Astron. J., 2002, vol. 124, pp. 3404–3423.

    Article  ADS  Google Scholar 

  • Dodd, R.T., Meteorites, Chemistry Univ. Press, 1981.

    Google Scholar 

  • Dorogokupets, P.I., Sokolova, T.S., and Litasov, K.D., Thermodynamic properties of bcc-Fe to melting temperature and pressure to 15 GPa, Geodyn. Tectonophys., 2014, vol. 5, pp. 1033–1044.

    Article  Google Scholar 

  • Dorogokupets, P.I., Litasov, K.D., and Sokolova, T.S., The equations of state of bcc, fcc, hcp, and liquid Fe consistent with P-V-T data, and iron phase diagram to 350 GPa and 6000 K, Phys. Earth Planet. Int., 2015 (in press).

    Google Scholar 

  • Galimov, E.M., Lunar matter origin, Geokhimiya, 2004, no. 7, pp. 691–706.

    Google Scholar 

  • Garcia, R.F., Gagnepain-Beyneix, J., Chevrot, S., and Lognonné, P., Very preliminary reference Moon model, Phys. Earth Planet. Int., 2011, vol. 188, pp. 96–113.

    Article  ADS  Google Scholar 

  • Gusev, A., Hanada, H., and Petrova, N., Rotation, Physical Libration, Internal Structure of the Active and MultiLayer Moon, Kazan: Kazan Univ., 2015.

    Google Scholar 

  • Hauck, S.A., Aurnou, J.M., and Dombard, A.J., Sulfur’s impact on core evolution and magnetic field generation on Ganymede, J. Geophys. Res., 2006, vol. 111, p. E09008. Doi:10.1029/2005JE002557

    Article  ADS  Google Scholar 

  • Hauri, E.H., Saal, A.E., Rutherford, M.J., and Van Orman, J.A., Water in the Moon’s interior: truth and consequences, Earth Planet. Sci. Lett., 2015, vol. 409, pp. 252–264.

    Article  ADS  Google Scholar 

  • Hirose, K., Labrosse, S., and Hernlund, J., Composition and state of the core, Annu. Rev. Earth Planet. Sci., 2013, vol. 41, pp. 657–691.

    Article  ADS  Google Scholar 

  • Hood, L.L., Mitchell, D.L., Lin, R.P., Acuña, M.H., and Binder, A.B., Initial measurements of the lunar induced magnetic dipole moment using lunar prospector magnetometer data, Geophys. Rev. Lett., 1999, vol. 26, pp. 2327–2330.

    Article  ADS  Google Scholar 

  • Jarosewich, E., Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses, Meteoritics, 1990, vol. 25, pp. 323–337.

    Article  ADS  Google Scholar 

  • Jellinek, A.M. and Jackson, M.G., Connections between the bulk composition, geodynamics and habitability of Earth, Nature Geosci., 2015, vol. 8, pp. 587–593. doi:10.1038/ngeo2488

    Article  ADS  Google Scholar 

  • Jing, Z., Wang, Y., Kono, Y., Yu, T., Sakamaki, T., Park, C., Rivers, M.L., Sutton, S.R., and Shen, G., Sound velocity of Fe-S liquids at high pressure: implications for the Moon’s molten outer core, Earth Planet. Sci. Lett., 2014, vol. 396, pp. 78–87.

    Article  ADS  Google Scholar 

  • Keszthelyi, L., Jaeger, W., Milazzo, M., Radebaugh, J., Davies, A.G., and Mitchell, K.L., New estimates for Io eruption temperatures: implications for the interior, Icarus, 2007, vol. 192, pp. 491–502.

    Article  ADS  Google Scholar 

  • Khan, A., Connolly, J.A.D., Maclennan, J., and Mosegaard, K., Joint inversion of seismic and gravity data for lunar composition and thermal state, Geophys. J., 2007, vol. 168, pp. 243–258.

    Article  ADS  Google Scholar 

  • Khan, A., Pommier, A., Neumann, G., and Mosegaard, K., The lunar moho and the internal structure of the Moon: a geophysical perspective, Tectonophysics, 2013, vol. 609, pp. 331–352.

    Article  ADS  Google Scholar 

  • Khan, A., Connolly, J.A.D., Pommier, A., and Noir, J., Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution, J. Geophys. Res. Planets, 2014, vol. 119, pp. 2197–2221. Doi:10.1002/2014JE004661

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., and Volwerk, M., The permanent and inductive magnetic moments of Ganymede, Icarus, 2002, vol. 157, pp. 507–522.

    Article  ADS  Google Scholar 

  • Komabayashi, T. and Fei, Y., Internally consistent thermodynamic database for iron to the Earth’s core conditions, J. Geophys. Res., 2010, vol. 115, p. B03202. Doi:10.1029/2009JB006442.

    Article  ADS  Google Scholar 

  • Konopliv, A.S., Binder, A.B., Hood, L.L., Kucinskas, A.B., Sjogren, W.L., and Williams, J.G., Improved gravity field of the Moon from lunar prospector, Science, 1998, vol. 281, pp. 1476–1480.

    Article  ADS  Google Scholar 

  • Kronrod, V.A. and Kuskov, O.L., Chemical differentiation of the Galilean satellites of Jupiter: 4. Isochemical models for the compositions of Io, Europa, and Ganymede, Geochem. Int., 2006, vol. 44, pp. 529–546.

    Article  Google Scholar 

  • Kronrod, V.A. and Kuskov, O.L., Inversion of seismic and gravity data for the composition and core sizes of the Moon, Izv. Phys. Solid Earth, 2011, vol. 47, pp. 711–730.

    Article  ADS  Google Scholar 

  • Kuskov, O.L. and Khitarov, N.I., Termodinamika i geokhimiya yadra i mantii Zemli (Thermodynamics and Geochemistry of the Earth’s Core and Mantle), Moscow: Nauka, 1982.

    Google Scholar 

  • Kuskov, O.L., Galimzyanov, R.F., Truskinovskii, L.M., and Pil’chenko, V.A., Validity of thermodynamical calculations for chemical and phase equilibriums under superhigh pressures, Geokhimiya, 1983, no. 6, pp. 849–871.

    Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Constitution of the Moon: 5. Constraints on composition, density, temperature, and radius of a core, Phys. Earth Planet. Int., 1998, vol. 107, pp. 285–306.

    Article  ADS  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Resemblance and difference between constitution of the Moon and Io, Planet. Space Sci., 2000, vol. 48, pp. 717–726.

    Article  ADS  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Core sizes and internal structure of the Earth’s and Jupiter’s satellites, Icarus, 2001, vol. 151, pp. 204–227.

    Article  ADS  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Internal structure of Europa and Callisto, Icarus, 2005, vol. 177, pp. 550–569.

    Article  ADS  Google Scholar 

  • Kuskov, O.L., Dorofeeva, V.A., Kronrod, V.A., and Makalkin, A.B., Sistemy Yupitera i Saturna: formirovanie, sostav i vnutrennee stroenie krupnykh sputnikov (Jupiter and Saturn Systems: Formation, Composition and Internal Structure of Massive Satellites), Moscow: LKI, 2009.

    Google Scholar 

  • Kuskov, O.L., Kronrod, V.A., and Kronrod, E.V., Thermochemical constraints on the interior structure and composition of the lunar mantle, Phys. Earth Planet Int., 2014, vol. 235, pp. 84–95. Doi: 10.1016/j.pepi.2014.07.011.

    Article  ADS  Google Scholar 

  • Kuskov, O.L., Kronrod, V.A., and Kronrod, E.V., Thermochemical constraints on the thermal state, composition, and mineralogy of the upper mantle of the Moon: evidence from the seismic models, Solar Syst. Res., 2015, vol. 49, pp. 75–91. Doi: 10.1134/S0038094615010049.

    Article  ADS  Google Scholar 

  • Laneuville, M., Wieczorek, M.A., Breuer, D., Aubert, J., Morard, G., and Rückriemen, T., A long-lived lunar dynamo powered by core crystallization, Earth Planet. Sci. Lett., 2014, vol. 401, pp. 251–260.

    Article  ADS  Google Scholar 

  • Lebedev, E.B. and Galimov, E.M., Experimental modeling of the origin of the Moon’s metallic core at partial melting, Geochemistry, 2012, vol. 50, no. 8, p. 639.

    Article  Google Scholar 

  • Lewis, J.S., Physics and Chemistry of the Solar System, San Diego: Acad. Press, 1997.

    Google Scholar 

  • Lodders, K., Solar system abundances and condensation temperatures of the elements, Astrophys. J., 2003, vol. 591, pp. 1220–1247.

    Article  ADS  Google Scholar 

  • Lognonné, P. and Johnson, C.L., Planetary Seismology. Treatise on Geophysics, Planets and Moons, Elsevier, 2007, vol. 10, pp. 69–122.

    Article  Google Scholar 

  • Makalkin, A.B., Dorofeeva, V.A., and Ruskol, E.L., Modeling the protosatellite circum Jovian accretion disk: an estimate of the basic parameters, Solar Syst. Res., 1999, vol. 33, no. 6, pp. 456–463.

    ADS  Google Scholar 

  • Makalkin, A.B. and Dorofeeva, V.A., Accretion disks around Jupiter and Saturn at the stage of regular satellite formation, Solar Syst. Res., 2014, vol. 48, no. 1, pp. 62–78.

    Article  ADS  Google Scholar 

  • Marboeuf, U., Thiabaud, A., Alibert, Y., Cabral, N., and Benz, W., From planetesimals to planets: volatile molecules, Astron. Astrophys., 2014, vol. 570, p. A36. doi:10.1051/0004-6361/201423431.

    Article  ADS  Google Scholar 

  • Matsumoto, K., Yamada, R., Kikuchi, F., Kamata, S., Ishihara, Y., Iwata, T., Hanada, H., and Sasaki, S., Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR, Proc. 46th Lunar and Planet. Sci. Conf., Houston, 2015, Abstract 1696.

    Google Scholar 

  • Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., and Asta, M., Development of new interatomic potentials appropriate for crystalline and liquid iron, Philos. Mag. A, 2003, vol. 83, pp. 3977–3994.

    Article  ADS  Google Scholar 

  • Nasch, P.M., Manghnani, M.H., and Secco, R.A., Sound velocity measurements in liquid iron by ultrasonic interferometry, J. Geophys. Res., 1994, vol. 99, pp. 4285–4291.

    Article  ADS  Google Scholar 

  • Nasch, P.M., Manghnani, M.H., and Secco, R.A., Anomalous behavior of sound velocity and attenuation in liquid Fe-Ni-S, Science, 1997, vol. 277, pp. 219–221.

    Article  Google Scholar 

  • Nishida, K., Terasaki, H., Ohtani, E., and Suzuki, A., The effect of sulfur content on density of the liquid Fe-S at high pressure, Phys. Chem. Minerals, 2008, vol. 35, pp. 417–423.

    Article  ADS  Google Scholar 

  • Nishida, K., Kono, Y., Terasaki, H., Takahashi, S., Ishii, M., Shimoyama, Y., Higo, Y., Funakoshi, K.-I., Irifune, T., and Ohtani, E., Sound velocity measurements in liquid Fe-S at high pressure: implications for Earth’s and lunar cores, Earth Planet. Sci. Lett., 2013, vol. 262, pp. 182–186.

    Article  ADS  Google Scholar 

  • Palme, H. and O’Neill, H.St.C., Cosmochemical estimates of mantle composition, in Treatise on Geochemistry, Holland, H. and Turekian, K., Eds., Elsevier, 2014, pp. 1–38. Doi:10.1016/B978-0-08-095975-7.00201-1

    Chapter  Google Scholar 

  • Raevskiy, S.N., Gudkova, T.V., Kuskov, O.L., and Kronrod, V.A., On reconciling the models of the interior structure of the Moon with gravity data, Izv. Phys. Solid Earth, 2015, vol. 51, no. 1, p. 134.

    Article  ADS  Google Scholar 

  • Rai, N. and van Westrenen, W., Lunar core formation: new constraints from metal-silicate partitioning of siderophile elements, Earth Planet. Sci. Lett., 2014, vol. 388, pp. 343–352.

    Article  ADS  Google Scholar 

  • Rivoldini, A., Van Hoolst, T., Verhoeven, O., Mocquet, A., and Dehant, V., Geodesy constrains on the interior structure of Mars, Icarus, 2011, vol. 213, pp. 451–472.

    Article  ADS  Google Scholar 

  • Rückriemen, T., Breuer, D., and Spohn, T., The Fe snow regime in Ganymede’s core: a deep-seated dynamo below a stable snow zone, J. Geophys. Res., 2015, vol. 120, pp. 1095–1118. Doi: 10.1002/2014JE004781.

    Article  Google Scholar 

  • Rushmer, T., Minarik, W.G., and Taylor, G.J., Physical processes of core formation, in Origin of the Earth and Moon, Canup, R.M. and Righter, K., Eds., Tucson: Univ. Arizona Press, 2000, pp. 227–243.

    Google Scholar 

  • Ruskol, E.L., The origin of Jovian and Saturnian satellites in accretion disks, Solar Syst. Res., 2006, vol. 40, no. 6, pp. 456–461.

    Article  ADS  Google Scholar 

  • Sanloup, C., Guyot, F., Gillet, P., Fiquet, G., Mezouar, M., and Martinez, I., Density measurements of liquid Fe-S alloys at high-pressure, Geophys. Rev. Lett., 2000, vol. 27, pp. 811–814.

    Article  ADS  Google Scholar 

  • Schubert, G., Anderson, J.D., Spohn, T., and McKinnon, W.B., Interior composition, structure and dynamics of the Galilean satellites in Jupiter: The Planet, Satellites and Magnetosphere, Bagenal, F., Dowling, T., and McKinnon, W., Eds., Cambridge Univ. Press, 2004, pp. 281–306.

    Google Scholar 

  • Scott, H.P., Williams, Q., and Ryerson, F.J., Experimental constraints on the chemical evolution of large icy satellites, Earth Planet. Sci. Lett., 2002, vol. 203, pp. 399–412.

    Article  ADS  Google Scholar 

  • Shimizu, H., Matsushima, M., Takahashi, F., Shibuya, H., and Tsunakawa, H., Constraint on the lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite, Icarus, 2013, vol. 222, pp. 32–43.

    Article  ADS  Google Scholar 

  • Sohl, F., Choukroun, M., Kargel, J., Kimura, J., Pappalardo, R., Vance, S., and Zolotov, M., Subsurface water oceans on icy satellites: chemical composition and exchange processes, Space Sci. Rev., 2010, vol. 153, pp. 485–510. doi 10.1007/s11214-010-9646-y.

    Article  ADS  Google Scholar 

  • Tsujino, N., Nishihara, Y., Nakajima, Y., Takahashi, E., Funakoshi, K., and Higo, Y., Equation of state of γ-Fe: reference density for planetary cores, Earth Planet. Sci. Lett., 2013, vol. 375, pp. 244–253.

    Article  ADS  Google Scholar 

  • Weber, R.C., Lin, P., Garnero, E.J., Williams, Q., and Lognonné, P., Seismic detection of the lunar core, Science, 2011, vol. 331, pp. 309–312.

    Article  ADS  Google Scholar 

  • Weiss, B.P. and Tikoo, S.M., The lunar dynamo, Science, 2014, vol. 346, p. 1246753. Doi: 10.1126/science.1246753.

    Article  Google Scholar 

  • Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., and Dickey, J.O., Lunar rotational dissipation in solid body and molten core, J. Geophys. Res., 2001, vol. 106, pp. 27933–27968.

    Article  ADS  Google Scholar 

  • Williams, Q., Bottom-up versus top-down solidification of the cores of small Solar system bodies: constraints on paradoxical cores, Earth Planet. Sci. Lett., 2009, vol. 284, pp. 564–569.

    Article  ADS  Google Scholar 

  • Williams, J.G., Konopliv, A.S., Boggs, D.H., Park, R.S., Yuan, D-N., Lemoine, F.G., Goossen, S., Mazarico, E., Nimmo, F., Weber, R.C., Asmar, S.W., Melosh, H.J., Neumann, G.A., Phillips, R.J., Smith, D.E., Solomon, S.C., Watkins, M.M., Wieczorek, M.A., Andrews-Hanna, J.C., Head, J.W., Kiefer, W.S., Matsuyama, I., McGovern, P.J., Taylor, G.J., and Zuber, M.T., Lunar interior properties from the GRAIL mission, J. Geophys. Res.: Planets, 2014, vol. 119, no. 7, pp. 1546–1578. doi: 10.1002/2013JE004559.

    Article  ADS  Google Scholar 

  • Yamada, R., Matsumoto, K., Kikuchi, F., and Sasaki, S., Error determination of lunar interior structure by lunar geodetic data on seismic restriction, Phys. Earth Planet. Inter., 2014, vol. 231, pp. 56–64.

    Article  ADS  Google Scholar 

  • Yang, H. and Zhao, W., Improved views of the Moon in the earl twenty first century: a review, Earth, Moon, Planets, 2015, vol. 114, pp. 101–135. Doi 10.1007/s11038-0159459-9.

    Article  ADS  Google Scholar 

  • Zharkov, V.N., Vnutrennee stroenie Zemli i planet. Elementarnoe vvedenie v planetnuyu i sputnikovuyu geofiziku (Internal Structure of the Earth and Planets. Elementary Introduction to Planetary and Satellite Geophysics), Moscow: Nauka i obrazovanie, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Kuskov.

Additional information

Original Russian Text © O.L. Kuskov, D.K. Belashchenko, 2016, published in Astronomicheskii Vestnik, 2016, Vol. 50, No. 3, pp. 177–196.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuskov, O.L., Belashchenko, D.K. Molecular dynamics estimates for the thermodynamic properties of the Fe–S liquid cores of the Moon, Io, Europa, and Ganymede. Sol Syst Res 50, 165–183 (2016). https://doi.org/10.1134/S0038094616030035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094616030035

Keywords

Navigation