Skip to main content
Log in

Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A wide class of two-dimensional and three-dimensional steady-state and non-steady-state flows of a viscous incompressible fluid is considered. It is assumed that the components of the velocity of a fluid linearly depend on two spatial coordinates. The three-dimensional Navier-Stokes equations in this case are reduced to a closed determining system that consists of six equations with partial derivatives of the third and second orders. A brief review of the known exact solutions of this system and the respective flows of a fluid (Couette-Poiseuille, Ekman, Stokes, Karman, and other flows) is given. The cases of reducing a determining system to one or two equations are described. Many new exact solutions of two-dimensional and three-dimensional nonstationary Navier-Stokes equations containing arbitrary functions and arbitrary parameters are derived. Periodic (both in spatial coordinates and in time) and some other solutions that are expressed in terms of elementary functions are described. The problems of the nonlinear stability of solutions are studied. A number of new hydrodynamic problems are considered. A general interpretation of the solutions as the main terms of the Taylor series expansion in terms of radial coordinates is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kutepov, A.M. Polyanin, A.D., et al., Khimicheskaya gidrodinamika (Chemical Hydrodynamics), Moscow: Byuro Kvantum, 1996.

    Google Scholar 

  2. Polyanin, A.D., Kutepov, A.M., Vyazmin, A.V., and Kazenin, D.A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, London: Taylor & Francis, 2002.

    Google Scholar 

  3. Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Fluid Mechanics), Moscow: Nauka, 1973.

    Google Scholar 

  4. Kochin, N.E., Kibel’, I.A., and Roze, N.V., Teoreticheskaya gidromekhanika. (Theoretical Hydromechanics), Fizmatgiz, 1963.

  5. Landau, L.D. and Lifshitz, E.M., Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1986.

    Google Scholar 

  6. Schlichting, H., Boundary Layer Theory, New York: McGraw-Hill, 1974.

    Google Scholar 

  7. Pukhnachev, V.V., Symmetries in the Navier-Stokes Equations, Usp. Mekh., 2006, no. 6, pp. 3–76.

  8. Drazin, P.G. and Riley, N., The Navier-Stokes Equations: A Classification of Flows and Exact Solutions, Cambridge: Cambridge Univ. Press, 2006.

    Google Scholar 

  9. Polyanin, A.D. and Zaitsev, V.F., Handbook of Nonlinear Partial Differential Equations, Boca Raton, FL: Chapman & Hall / CRC, 2004.

    Google Scholar 

  10. Ludlow, D.K., Clarkson, P.A., and Bassom, A.P., Nonclassical Symmetry Reductions of the Two-Dimensional Incompressible Navier-Stokes Equations, Stud. Appl. Math., 1999, vol. 103, pp. 183–240.

    Article  Google Scholar 

  11. Ludlow, D.K., Clarkson, P.A., and Bassom, A.P., Nonclassical Symmetry Reductions of the Three-Dimensional Incompressible Navier-Stokes Equations, J. Phys., A: Math. Gen., 1998, vol. 31, pp. 7965–7980.

    Article  Google Scholar 

  12. Ibragimov, N.H., CRC Handbook of Lie Group to Differential Equations, Boca Raton, FL: CRC, 1995, vol. 2.

    Google Scholar 

  13. Lin, C.C., Note on a Class of Exact Solutions in Magneto-Hydrodynamics, Arch. Rational Mech. Anal., 1958, vol. 1, pp. 391–395.

    Article  Google Scholar 

  14. Sidorov, A.F., On Two Classes of the Solutions of the Equations of Fluid Mechanics and Their Relation to the Theory of Traveling Waves, Prikl. Mekh. Tekh. Fiz., 1989, no. 2, pp. 34–40.

  15. Meleshko, S.V. and Pukhnachev, V.V., On One Class of the Partially Invariant Solutions of the Navier-Stokes Equations, Prikl. Mekh. Tekh. Fiz., 1999, no. 2, pp. 24–33.

  16. Meleshko, S.V., A Particular Class of Partially Invariant Solutions of the Navier-Stokes Equations, Nonlinear Dyn., 2004, vol. 36, no. 1, pp. 47–68.

    Article  Google Scholar 

  17. Hagen, G., Uber die Bewegung des Wasser in engen zylindrischen Rohren, Pogg. Ann., 1839, vol. 46, pp. 423–442.

    Article  Google Scholar 

  18. Poiseuille, J., Recherches experimentelles sur le mouvement des fluides dans les tubes de tres petits diametres, Comptes Rendus, 1841, vol. 12, pp. 112–115.

    Google Scholar 

  19. Couette, M., Etudes sur le frottement des fluides, Ann. Chim. Phys., 1890, vol. 21, pp. 433–510.

    Google Scholar 

  20. Stokes, G.G., On the Effect of the Internal Friction of Fluid on the Motion of Pendulums, Trans. Cambridge Philos. Soc., 1851, vol. 9, pp. 8–106.

    Google Scholar 

  21. Ekman, V.W., On the Influence of the Earth’s Rotation on Ocean Currents, Ark. Mat. Astron. Fys., 1905, vol. 2, pp. 1–5.

    Google Scholar 

  22. Berker, R., A New Solution of the Navier-Stokes Equations for the Motion of a Fluid Contained between Parallel Plates Rotating about the Same Axis, Arch. Mech. Stosow, 1979, vol. 31, no. 2, pp. 265–280.

    Google Scholar 

  23. Berker, R., An Exact Solution of the Navier-Stokes Equation: the Vortex with Curvilinear Axis, Int. J. Eng. Sci, 1981, vol. 20, no. 2, pp. 217–230.

    Article  Google Scholar 

  24. Lai, C.-Y., Rajagopal, K.R., and Szeri, A.Z., Asymmetric Flow between Parallel Rotating Disks, J. Fluid Mech., 1984, vol. 446, pp. 203–225.

    Article  Google Scholar 

  25. Polyanin, A.D., Exact Solutions of the Navier-Stokes Equations with the Generalized Separation of Variables, Dokl. Akad. Nauk, 2001, vol. 380, no. 4, pp. 491–496 [Dokl. Phys. (Engl. Transl.), vol. 46, no. 10, pp. 726–731].

    CAS  Google Scholar 

  26. Polyanin, A.D. and Zaitsev, V.F., Equations of the Nonstationary Boundary Layer: General Transformations and Exact Solutions, Teor. Osn. Khim. Technol., 2001, vol. 35, no. 6, pp. 563–573.

    Google Scholar 

  27. Hiemenz, K., Die Grenzschicht An Einem in Den Gleichformigen Flussigkeitsstrom Eingetauchten Geraden Kreiszylinder, Dinglers Polytech. J, 1911, vol. 326, pp. 321–324.

    Google Scholar 

  28. Stuart, J.T., The Viscous Flow near a Stagnation Point When the External Flow Has Uniform Vorticity, J. Aerosp. Sci., 1959, vol. 26, pp. 124–125.

    Google Scholar 

  29. Tamada, K., Two-Dimensional Stagnation Point Flow Impinging Obliquely on a Plane Wall, J. Phys. Soc. Jpn., 1979, vol. 46, pp. 310–311.

    Article  Google Scholar 

  30. Dorrepaal, J.M., An Exact Solution of the Navier-Stokes Equation Which Describes Non-Orthogonal Stagnation Point Flow in Two Dimensions, J. Fluid Mech., 1986, vol. 163, pp. 141–147.

    Article  Google Scholar 

  31. Wang, C.Y., Exact Solutions of the Unsteady Navier-Stokes Equations, Appl. Mech. Rev., 1989, vol. 42, no. 11, pp. 269–282.

    Article  Google Scholar 

  32. Wang, C.Y., Exact Solutions of the Steady-State Navier-Stokes Equations, Annu. Rev. Fluid Mech., 1991, vol. 23, pp. 159–177.

    Article  Google Scholar 

  33. Wang, C.Y., Exact Solutions of the Navier-Stokes Equations — the Generalized Beltrami Flows, Review Extension, Acta Mech., 1990, vol. 81, pp. 69–74.

    Article  Google Scholar 

  34. Crane, L.J., Flow past a Stretching Plate, Z. Angew. Math. Phys., 1970, vol. 21, pp. 645–647.

    Article  Google Scholar 

  35. Brady, J.F. and Acrivos, A., Steady Flow in a Channel or Tube with an Accelerating Surface Velocity. An Exact Solution to the Navier-Stokes Equations with Reverse Flow, J. Fluid Mech., 1981, vol. 112, pp. 127–150.

    Article  CAS  Google Scholar 

  36. Berman, A.S., Laminar Flow in Channels with Porous Walls, J. Appl. Phys., 1953, vol. 24, pp. 1232–1235.

    Article  Google Scholar 

  37. Terrill, R.M. and Shrestha, G.M., Laminar Flow through Parallel and Uniformly Porous Walls of Different Permeability, Z. Angew. Math. Phys., 1965, vol. 16, pp. 470–482.

    Article  Google Scholar 

  38. Novikov, P.A. and Lyubin, L.Ya., Gidrodinamika shchelevykh sistem (Hydrodynamics of Slot Systems), Minsk: Nauka i Tekhnika, 1988.

    Google Scholar 

  39. von Karman, T., Uber Laminare und Turbulente Reibung, Z. Angew. Math. Mech., 1921, vol. 1, pp. 233–252.

    Google Scholar 

  40. Bodewadt, U.T., Die Drehstromung uber Festem Grunde, Z. Angew. Math. Mech., 1940, vol. 20, pp. 241–253.

    Article  Google Scholar 

  41. Batchelor, G.K., Note on Class of Solutions of the Navier-Stokes Equations Representing Steady Rotationally — Symmetric Flow, Q. J. Mech. Appl. Math., 1951, vol. 4, pp. 29–41.

    Article  Google Scholar 

  42. Stewartson, K., On the Flow between Two Rotating Coaxial Disks, Proc. Cambridge Philos. Soc., 1953, vol. 5, pp. 333–341.

    Article  Google Scholar 

  43. Holodniok, M., Kubicek, M., and Hlavacek, V., Computation of the Flow between Two Rotating Coaxial Disk: Multiplicity of Steady-State Solutions, J. Fluid Mech., 1981, vol. 108, pp. 227–240.

    Article  Google Scholar 

  44. Brady, J.F. and Durlofsky, L., On Rotating Disk Flow, J. Fluid Mech., 1987, vol. 175, pp. 363–394.

    Article  CAS  Google Scholar 

  45. Watson, L.T. and Wang, C.Y., Deceleration of a Rotating Disc in a Viscous Fluid, Phys. Fluids, 1979, vol. 22, pp. 2267–2269.

    Article  Google Scholar 

  46. Lavrent’eva, O.M., Flow of a Viscous Fluid in a Layer on a Rotating Plane, Prikl. Mekh. Tekh. Fiz., 1989, no. 5, pp. 41–48.

  47. Agrawal, H.L., A New Exact Solution of the Equations of Viscous Motion with Axial Symmetry, Q. J. Mech. Appl. Math., 1957, vol. 10, pp. 42–44.

    Article  Google Scholar 

  48. Terrill, R.M. and Cornish, J.P., Radial Flow of a Viscous, Incompressible Fluid between Two Stationary Uniformly Porous Discs, Z. Angew. Math. Phys., 1973, vol. 24, pp. 676–688.

    Article  Google Scholar 

  49. Aristov, S.N., Stationary Cylindrical Vortex in a Viscous Fluid, Dokl. Akad. Nauk, 2001, vol. 377, no. 4, pp. 477–480 [Dokl. Phys. (Engl. Transl.), vol. 46, no. 4, pp. 251–253].

    CAS  Google Scholar 

  50. Aristov, S.N. and Gitman, I.M., Viscous Flow between Two Moving Parallel Disks. Exact Solutions and Stability Analysis, J. Fluid Mech., 2002, vol. 464, pp. 209–215.

    Article  Google Scholar 

  51. Polyanin, A.D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Boca Raton, FL: Chapman & Hall/CRC, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Polyanin.

Additional information

Original Russian Text © S.N. Aristov, D.V. Knyazev, A.D. Polyanin, 2009, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2009, Vol. 43, No. 5, pp. 547–566.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aristov, S.N., Knyazev, D.V. & Polyanin, A.D. Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables. Theor Found Chem Eng 43, 642 (2009). https://doi.org/10.1134/S0040579509050066

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1134/S0040579509050066

Keywords

Navigation