Skip to main content
Log in

Two-phase flow regimes in microchannels

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Capillary hydrodynamics has three considerable distinctions from macrosystems: first, there is an increase in the ratio of the surface area of the phases to the volume that they occupy; second, a flow is characterized by small Reynolds numbers at which viscous forces predominate over inertial forces; and third, the microroughness and wettability of the wall of the channel exert a considerable influence on the flow pattern. In view of these differences, the correlations used for tubes with a larger diameter cannot be used to calculate the boundaries of the transitions between different flow regimes in microchannels. In the present review, an analysis of published data on a gas-liquid two-phase flow in capillaries of various shapes is given, which makes it possible to systematize the collected body of information. The specific features of the geometry of a mixer and an inlet section, the hydraulic diameter of a capillary, and the surface tension of a liquid exert the strongest influence on the position of the boundaries of two-phase flow regimes. Under conditions of the constant geometry of the mixer, the best agreement in the position of the boundaries of the transitions between different hydrodynamic regimes in capillaries is observed during the construction of maps of the regimes with the use of the Weber numbers for a gas and a liquid as coordinate axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Damianides, C.A. and Westwater, J.W., Two-Phase Flow Patterns in a Compact Heat Exchanger and in Small Tubes, Proc. 2nd UK National Conf. on Heat Transfer, Glasgow: Mechanical Engineering Publications, 1988, p. 1257.

    Google Scholar 

  2. Fukano, T. and Kariyasaki, A., Characteristics of Gas-Liquid Two-Phase Flow in a Capillary, Nucl. Eng. Des, 1993, vol. 141, nos. 1–2, p. 59.

    Article  CAS  Google Scholar 

  3. Serizawa, A., Feng, Z., and Kawara, Z., Two-Phase Flow in Microchannels, Exp. Thermal Fluid Sci., 2002, vol. 26, nos. 6–7, p. 703.

    Article  CAS  Google Scholar 

  4. Kawahara, A., Chung, P.M.-Y., and Kawaji M., Investigation of Two-Phase Flow Pattern, Void Fraction and Pressure Drop in a Microchannel, Int. J. Multiphase Flow, 2002, vol. 28, no. 9, p. 1411.

    Article  CAS  Google Scholar 

  5. Chinnov, E.A. and Kabov, O.A., Two-Phase Flows in Tubes and Capillary Channels, Teplofiz. Vys. Temp., 2006, vol. 44, no. 5, p. 777.

    Google Scholar 

  6. Chinnov, E.A., Guzanov, V.V., and Kabov, O.A., Instability of a Two-Phase Flow in a Rectangular Microchannel, Pis’ma Zh. Tekh. Fiz., 2007, vol. 35, no. 14, p. 32.

    Google Scholar 

  7. Ghiaasiaan, S.M. and Abdel-Khalik, S.I., Two-Phase Flow in Microchannels, Adv. Heat Transfer, 2001, vol. 34, p. 145.

    CAS  Google Scholar 

  8. Akbar, M.K., Plummer, D.A., and Ghiaasiaan, S.M., On Gas-Liquid Two-Phase Flow Regimes in Microchannels, Int. J. Multiphase Flow, 2003, vol. 29, no. 5, p. 855.

    Article  CAS  Google Scholar 

  9. Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., and Heiszwolf, J.J., Multiphase Monolith Reactors: Chemical Reaction Engineering of Segmented Flow in Microchannels, Chem. Eng. Sci., 2005, vol. 60, no. 22, p. 5895.

    Article  CAS  Google Scholar 

  10. Tsoligkas, A.N., Simmons, M.J.H., and Wood, J., Influence of Orientation upon the Hydrodynamics of Gas-Liquid Flow for Square Channels in Monolith Supports, Chem. Eng. Sci., 2007, vol. 62, no. 16, p. 4365.

    Article  CAS  Google Scholar 

  11. Cubaud, T. and Ho, C.M., Transport of Bubbles in Square Microchannels, Phys. Fluids, 2004, vol. 16, no. 12, p. 4575.

    Article  CAS  Google Scholar 

  12. Hassan, I., Vaillancourt, M., and Pehlivan, K., Two-Phase Flow Regime Transitions in Microchannels: A Comparative Experimental Study, Microscale Thermophys. Eng, 2005, vol. 9, no. 2, p. 165.

    Article  Google Scholar 

  13. Waelchli, S. and von Rohr, P.R., Two-Phase Flow Characteristics in Gas-Liquid Microreactors, Int. J. Multiphase Flow, 2006, vol. 32, no. 7, p. 791.

    Article  CAS  Google Scholar 

  14. Galbiati, L. and Andreini, P., Flow Pattern Transition for Vertical Downward Two-Phase Flow in Capillary Tubes. Inlet Mixing Effects, Int. Commun. Heat Mass Transfer, 1992, vol. 19, no. 6, p. 791.

    Article  CAS  Google Scholar 

  15. Bretherton, F.P., The Motion of Long Bubbles in Tubes, J. Fluid Mech., 1961, vol. 10, p. 166.

    Article  Google Scholar 

  16. Suo, M. and Griffith, P., Two-Phase Flow in Capillary Tubes, Trans. ASME J. Basic Eng., 1964, vol. 86, no. 3, p. 576.

    CAS  Google Scholar 

  17. Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I., and Sadowski, D.L., Gas-Liquid Two-Phase Flow in Microchannels. Part I: Two-Phase Flow Patterns, Int. J. Multiphase Flow, 1999, vol. 25, no. 3, p. 377.

    Article  CAS  Google Scholar 

  18. Chen, L., Tian, Y.S., and Karayiannis, T.G., The Effect of Tube Diameter on Vertical Two-Phase Regimes in Small Tubes, Int. J. Heat Mass Transfer, 2006, vol. 49, nos. 21–22, p. 4220.

    Article  Google Scholar 

  19. Zhao, T.S. and Bi, Q.C., Co-Current Air-Water Two-Phase Flow Patterns in Vertical Triangular Microchannels, Int. J. Multiphase Flow, 2001, vol. 27, no. 5, p. 765.

    Article  CAS  Google Scholar 

  20. Haverkamp, V., Hessel, V., Lowe, H., Menges, G., Warnier, M.J.F., Rebrov, E.V., de Croon, M.H.J.M., Schouten, J.C., and Liauw, M., Hydrodynamics and Mixer-Induced Bubble Formation in Microbubble Columns with Single and Multiple Channels, Chem. Eng. Technol, 2006, vol. 29, no. 9, p. 1015.

    Article  CAS  Google Scholar 

  21. Chung, P.M.-Y. and Kawaji M., The Effect of Channel Diameter on Adiabatic Two-Phase Flow Characteritics in Microchannels, Int. J. Multiphase Flow, 2004, vol. 30, nos. 7–8, p. 735.

    Article  CAS  Google Scholar 

  22. Yue, J., Luo, L., Gonthier, Y., Chen, G., and Yuan, Q., An Experimental Investigation of Gas-Liquid Two-Phase Flow in Single Microchannel Contactors, Chem. Eng. Sci., 2008, vol. 63, no. 16, p. 4189.

    Article  CAS  Google Scholar 

  23. Jones, O.C., Jr. and Zuber, N., Slug-Annular Transition with Particular Reference to Narrow Rectangular Ducts, Two-phase Momentum, Heat and Mass Transfer in Chemical, Process and Energy Engineering Systems, Durst, F., Tsiklauri, G.V., and Afgan, N.H., Eds., Washington, DC: Hemisphere, 1979, vol. 1, p. 345.

    Google Scholar 

  24. Coleman, J.W. and Garimella, S., Characterization of Two-Phase Flow Patterns in Small Diameter Round and Rectangular Tubes, Int. J. Heat Mass Transfer, 1999, vol. 42, no. 15, p. 2869.

    Article  Google Scholar 

  25. Warnier, M.J.F., de Croon, M.H.J.M., Rebrov, E.V., Hessel, V., and Schouten, J.C., Pressure Drop by High Speed Imaging Techniques in Water/Nitrogen and Isopropanol/Nitrogen Taylor Flows in Rectangular Micro Channels, Proc. 7th Netherlands Process Technology Symp. (NPS 7), Wessling, M., Ed., Enschede: National Research School in Process Technology OSPT, Veldhoven, the Netherlands, 2007.

    Google Scholar 

  26. Barajas, A.M. and Panton, R.L., The Effects of Contact Angle on Two-Phase Flow in Capillary Tubes, Int. J. Multiphase Flow, 1993, vol. 19, no. 2, p. 337.

    Article  CAS  Google Scholar 

  27. Lee, C.Y. and Lee, S.Y., Influence of Surface Wettability on Transition of Two-Phase Flow Pattern in Round Mini-Channels, Int. J. Multiphase Flow, 2008, vol. 34, no. 7, p. 706.

    Article  CAS  Google Scholar 

  28. Pohorecki, R., Sobieszuk, P., Kula, K., Moniuk, W., Zielinski, M., Cyganski, P., and Gawinski, P., Hydrodynamic Regimes of Gas-Liquid Flow in a Microreactor Channel, Chem. Eng. J., 2008, vol. 135, supl. 1, p. 185.

    Article  Google Scholar 

  29. Yang, C.-Y. and Shieh, C.-C., Flow Pattern of Air-Water and Two-Phase R-134a in Small Circular Tubes, Int. J. Multiphase Flow, 2001, vol. 27, no. 7, p. 1163.

    Article  CAS  Google Scholar 

  30. Shao, N., Salman, W., Gavriilidis, A., and Angeli, P., CFD Simulations of the Effect of Inlet Conditions on Taylor Flow Formation, Int. J. Heat Fluid Flow, 2008, vol. 29, no. 6, p. 1603.

    Article  CAS  Google Scholar 

  31. Amador, C., Salman, W., Sanguanpiyapan, S., Gavriilidis, A., and Angeli, P., Effect of Gas-Inlet Conditions on the Mechanism of Taylor Flow Formation, in Proc. 5th Int. Conf. on Multiphase Flow, Yokohama, 2004, CD-ROM, Paper no. 515.

  32. Qian, D. and Lawal, A., Numerical Study on Gas and Liquid Slugs for Taylor Flow in a T-Junction Microchannel, Chem. Eng. Sci., 2006, vol. 61, no. 23, p. 7609.

    Article  CAS  Google Scholar 

  33. Garstecki, P., Fuerstman, M.J., Stone, H.A., and Whitesides, G.M., Formation of Droplets and Bubbles in a Microfluidic T-Junction-Scaling and Mechanism of Break-Up, Lab Chip, 2006, vol. 6, no. 3, p. 437.

    Article  CAS  Google Scholar 

  34. Weinmueller, C., Hotz, N., Mueller, A., and Poulikakos, D., On Two-Phase Flow Patterns and Transition Criteria in Aqueous Methanol and CO2 Mixtures in Adiabatic, Rectangular Microchannels, Int. J. Multiphase Flow, 2009, vol. 35, no. 8, p. 760.

    Article  CAS  Google Scholar 

  35. Fukano, T., Kariyasaki, A., and Kagawa, M., Flow Patterns and Pressure Drop in Isothermal Gas-Liquid Cocurrent Flow in a Horizontal Capillary Tube, ANS Proc. 1989 National Heat Transfer Conf., Philadelphia, Pa, 1989, vol. 4, p. 153.

    Google Scholar 

  36. Xu, J., Experimental Study on Gas-Liquid Two-Phase Flow Regimes in Rectangular Channels with Mini Caps, Int. J. Heat Fluid Flow, 1999, vol. 20, no. 4, p. 422.

    Article  Google Scholar 

  37. Mishima, K., Hibiki, T., and Nishihara, H., Some Characteristics of Gas-Liquid Flow in Narrow Rectangular Ducts, Int. J. Multiphase Flow, 1993, vol. 19, no. 1, p. 115.

    Article  CAS  Google Scholar 

  38. Rezkallah, K.S., Weber Number Based Flow-Pattern Maps for Liquid-Gas Flows at Microgravity, Int. J. Multiphase Flow, 1996, vol. 22, no. 6, p. 1265.

    Article  CAS  Google Scholar 

  39. Cubaud, T., Tatineni, M., Zhong, X., and Ho, C.-M., Bubble Dispenser in Microfluidic Devices, Phys. Rev. E: Stat. Nonlin. Soft Matte. Phys, 2005, vol. 72, no. 3, p. 037302.

    Google Scholar 

  40. Gordillo, J.M., Ganan-Calvo, A.M., and Perez-Saborid, M., Monodisperse Microbubbling: Absolute Instabilities in Coflowing Gas-Liquid annulars, Phys. Fluids, 2001, vol. 13, no. 12, p. 3839.

    Article  CAS  Google Scholar 

  41. Garstecki, P., Stone, H.A., and Whitesides, G.M., Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions, Phys. Review Lett., 2005, vol. 94, no. 16, p. 164501.

    Article  Google Scholar 

  42. Salman, W., Gavriilidis, A., and Angeli, P., On the Formation of Taylor Bubbles in Small Tubes, Chem. Eng. Sci., 2006, vol. 61, no. 20, p. 6653.

    Article  CAS  Google Scholar 

  43. Chen, Y., Kulenovic, R., and Mertz, R., Numerical Study on the Formation of Taylor Bubbles in Capillary Tubes, Int. J. Thermal Sci., 2009, vol. 48, no. 2, p. 234.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Rebrov.

Additional information

Original Russian Text © E.V. Rebrov, 2010, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2010, Vol. 44, No. 4, pp. 371–383.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebrov, E.V. Two-phase flow regimes in microchannels. Theor Found Chem Eng 44, 355–367 (2010). https://doi.org/10.1134/S0040579510040019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579510040019

Keywords

Navigation