Skip to main content
Log in

Shear stress generated by radial flow impellers at bioreactor integrated membranes

  • Proceedings of XXV European Conference on Mixing “MIXING 15”
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The study reveals the hydrodynamics at the surface of a submerged tubular membrane module integrated in a stirred membrane bioreactor. The reactor is equipped with a conventional six flat-blade impeller imposing radial circulation across the membrane interface. Simulation and computer visualization of “real” flow using a Reynolds-averaged Navier-Stokes model and CFD methodology are employed. A variety of model solutions at various mixing intensity are obtained and the mixing conditions are assessed by delineation of the near-wall zones and identification of the zones' shear rate and shear stress values. Shear rate non-uniformity along the surface of the tubular module is visualized. Shear stress values as high as 160 Pa at the membrane module lower section and as low as 0.6 Pa at the module upper section has been determined. Referring to reported data for shear stress near flat plate stirred filtration cells and external narrow-channel cross-flow systems, the mixing conditions are expected to allow enhanced access of the retentate fluid to the membrane surface, as well as possible low membrane fouling potential related to microfiltration practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, S.-J. and Zhang, J.-J., Membrane bioreactors, in Bioprocessing for Value-Added Products from Renewable Resources, Yang, Sh.-T., Ed., Amsterdam: Elsevier, 2007, p. 138.

  2. Tsibranska, I. and Tylkowski, B., Concentration of Polyphenols by Integrated Membrane Operations, in Integrated Membrane Operations in the Food Production, Cassano, A. and Drioli, E., Eds., Berlin: de Gruyter, 2014, p. 269.

    Google Scholar 

  3. Judd, S., The MBR Book, Amsterdam: Elsevier, 2006.

    Google Scholar 

  4. Freitas, F., Alves, V.D., and Reis, M.A.M., Advances in bacterial exopolysaccharides: From production to biotechnological application, Trends Biotechnol., 2011, vol. 29, p. 388.

    Article  CAS  Google Scholar 

  5. Böhm, L., Drews, A., Prieske, H., Bérubé, P.R., and Kraume, M., The importance of fluid dynamics for MBR fouling mitigation, Bioresour. Technol., 2012, vol. 122, p. 50.

    Article  Google Scholar 

  6. Fane, A.G., Submerged membranes, Ch. 10, in Advanced Membrane Technology and Applications, Li, N.N., Fane, A.G., Winston-Ho, W.S., and Matsuura, T., Eds., New Jersey: Wiley, 2008, p. 239.

    Chapter  Google Scholar 

  7. Menniti, A., Kang, S., Elimelech, M., and Morgenroth, E., Influence of shear on production of extracellular polymeric substances in membrane bioreactors, Water Res., 2009, vol. 43, p. 4305.

    Article  CAS  Google Scholar 

  8. Brannock, M.W.D., de Wever, H., Wang, Y., and Leslie, G., CFD simulations of MBRs: inside submerged versus outside submerged membranes, Desalination, 2009, vol. 236, p. 244.

    Article  CAS  Google Scholar 

  9. Parvareh, A., Rahimi, M., Madaeni, S.S., and Alsairafi, A.A., Experimental and CFD study on the role of fluid flow pattern on membrane permeate flux, Chin., J. Chem. Eng., 2011, vol. 19, p. 18.

    Article  Google Scholar 

  10. Meng, L., Cheng, J-C., Jiang, H., Yang, C., Xing, W.-H., and Jin, W.-Q., Design and analysis of a submerged membrane reactor by CFD simulation, Chem. Eng. Technol., 2013, vol. 36, p. 1874.

    Article  CAS  Google Scholar 

  11. Koutsou, Ch.P. and Karabelas, A.J., Shear stresses and mass transfer at the base of a stirred filtration cell and corresponding conditions in narrow channels with spacers, J. Membr. Sci., 2012, vols. 399–400, p. 60.

    Article  Google Scholar 

  12. Vlaev, S.D., Rusinova-Videva, S., Pavlova, K., Kuncheva, M., Panchev, I., and Dobreva, S., Submerged culture for biomass and exopolysaccharide production by Antarctic yeast: some engineering considerations, Appl. Microbiol. Biotechnol., 2013, vol. 97, p. 5303.

    Article  CAS  Google Scholar 

  13. Sanchez Perez, J.A., Rodriguez Porcel, E.M., Casas Lopez, J.L., Fernandez Sevilla, J. M., and Chisti, Y., Shear rate in stirred tank and bubble column bioreactors, Chem. Eng. J., 2006, vol. 124, p. 1.

    Article  CAS  Google Scholar 

  14. Kelly, W. and Gigas, B., Using CFD to predict behavior of power law fluids operating in the transitional flow regime, Chem. Eng. Sci., 2003, vol. 58, p. 2141.

    Article  CAS  Google Scholar 

  15. Handbook of Industrial Mixing, Paul, E., Atiemo-Obeng, V., and Kresta, S., Eds., New Jersey: Wiley, 2004.

  16. ANSYS Fluent Release 13. Manual. Theory Guide, Canonsburg, Penn.: SAS IP, 2010.

  17. Jia, N., Gourma, M., and Thompson, C.P., Non-Newtonian multiphase flows: on drag reduction, pressure drop and liquid wall friction factor, Chem. Eng. Sci., 2011, vol. 66, p. 4742.

    Article  CAS  Google Scholar 

  18. Brucato, A., Ciofalo, M., Grisafi, F. and Micale, G., Numerical prediction of fow fields in baffled stirred vessels: a comparison of alternative modeling approaches, Chem. Eng. Sci., 1998, vol. 53, p. 3653.

    Article  CAS  Google Scholar 

  19. Montante, G. and Magelli, F., Liquid homogenization characteristic in vessels stirred with multiple Rushton turbines: CFD study and comparison with experimental data, Chem. Eng. Res. Des., 2004, vol. 82, p. 1179.

    Article  CAS  Google Scholar 

  20. Hanratty, T.J. and Campbell, J.A., Measurement of wall shear stress, in Fluid Mechanic Measurement, Goldstein, R.J., Ed., Washington: Hemisphere, 1987.

    Google Scholar 

  21. Vlaev, S.D., Nikov, I., and Martinov, M., Shear and skin friction on particles in power-law fluids agitated by flat-blade and fluid foil impellers, Chem. Eng. Sci., 2006, vol. 61, p. 5455.

    Article  CAS  Google Scholar 

  22. Kim, J.S., Lee, C.H., and Chang, I.S., Effect of pump shear on the performance of a cross flow membrane bioreactor, Water Res., 2001, vol. 35, p. 2137.

    Article  CAS  Google Scholar 

  23. Fulton B. and Bérubé P.R., Optimal module configuration and sparging scenario for a ZW500 submerged hollow fiber membrane system, Proc. Water Environment Federation Membrane Conf., Anaheim, Calif., 2010.

    Google Scholar 

  24. Prieske, H., Böhm, L., Drews, A., and Kraume, M., Optimised hydrodynamics for membrane bioreactors with immersed flat sheet membrane modules, Desalin. Water Treat., 2010, vol. 18, p. 270.

    Article  CAS  Google Scholar 

  25. Khalili-Garakani, A., Mehrnia, M.R., Mostoufi, N., and Sarrafzadeh, M.H., Analyze and control fouling in an air-lift MBR: CFD simulation and experimental strategies, Process Biochem., 2011, vol. 46, p. 1138.

    Article  CAS  Google Scholar 

  26. Koutsou, C.P., Yiantsios, S.G., and Karabelas, A.J., Direct numerical simulation of flow in spacer-filled channels, J. Membr. Sci., 2007, vol. 291, p. 53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Vlaev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlaev, S.D., Tsibranska, I. Shear stress generated by radial flow impellers at bioreactor integrated membranes. Theor Found Chem Eng 50, 959–968 (2016). https://doi.org/10.1134/S004057951606018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057951606018X

Keywords

Navigation