Skip to main content
Log in

Thermodynamic assessment of the possibility of emission of submicron particles in the process of coal combustion

  • Steam Boilers, Power-Plant Fuel, Burner Devices, and Auxiliary Equipment of Boilers
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Methods of chemical thermodynamics of multicomponent reactive systems are used to study the distribution of the most volatile components (potassium and sodium) in the products of combustion of 15 types of coal. The effect of the mineral part of coals and various potassium and sodium compounds on the temperature of their transition into the gas phase is investigated. It is shown that the distribution of potassium and sodium in the products of coal combustion depends on the speciation of these elements in the initial coal; the mineral part composition; the ash content of coals; and the sulfur, potassium, and sodium content of the initial coals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Dockery, C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, and F. E. Speizer, “An association between air pollution and mortality in six U.S. cities,” N. Engl. J. Med. 329, 1753–1759 (1993).

    Article  Google Scholar 

  2. F. Vejahati, Z. Xu, and R. Gupta, “Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization: A review,” Fuel 89, 904–911 (2010).

    Article  Google Scholar 

  3. E. Soco and J. Kalembkiewicz, “Investigations on Cr mobility from coal fly ash,” Fuel 88, 1513–1519 (2009).

    Article  Google Scholar 

  4. J. Li, X. Zhuang, and X. Querol, “Trace element affinities in two high-Ge coals from China,” Fuel 90, 240–247 (2011).

    Article  Google Scholar 

  5. L. Zhang and Y. Ninomiya, “Emission of suspended PM10 from laboratory-scale coal combustion and its correlation with coal mineral properties,” Fuel 85, 194–203 (2006).

    Article  Google Scholar 

  6. F. C. Lockwood and S. Yousif, “A model for the particulate matter enrichment with toxic metals in solid fuel flames,” Fuel Process. Technol. 65–66, 439–457 (2000).

    Article  Google Scholar 

  7. J. Tomeczek and H. Palugniok, “Kinetics of mineral matter transformation during coal combustion,” Fuel 81, 1251–1258 (2002).

    Article  Google Scholar 

  8. N. M. Kortsenshtein and E. V. Samuilov, “Interaction between the processes of volume condensation and thermal electron emission in a multicomponent reactive system,” Izv. Ross. Akad. Nauk, Energ., No. 3, 169–185 (2005).

    Google Scholar 

  9. V. S. Vdovchenko, M. I. Martynova, M. V. Novitskii, and G. D. Yushina, Power Fuel of the USSR: Reference Book (Energoizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  10. G. Ya. Gerasimov, N. A. Zhegul’skaya, I. B. Rozh- destvenskii, E. V. Samuilov, and N. A. Sheveleva, “Thermodynamic and thermophysical properties of the products of combustion and conversion of organic fuels,” Mat. Model. 10(8), 3–16 (1998).

    Google Scholar 

  11. V. P. Glushko, L. V. Gurvich, G. A. Bergman, I. V. Veits, V. A. Medvedev, G. A. Khachkuruzov, and V. S. Yungman, Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1978–1982), Vols. 1–4 [in Russian].

    Google Scholar 

  12. D. R. Stull, H. Prophet, et al., JANAF Thermochemical Tables, 2nd ed. (Washington, 1971).

    Google Scholar 

  13. M. W. Chase, J. L. Curnutt, A. T. Hu, H. Prophet, A. N. Syverud, and L. C. Walker, “JANAF thermochemical tables, 1974 supplement,” J. Phys. Chem. Ref. Data 3, 311 (1974); M. W. Chase, J. L. Curnutt, H. Prophet, R. A. McDonald, and A. N. Syverud, “JANAF thermochemical tables, 1975 supplement,” J. Phys. Chem. Ref. Data 4, 1 (1975); M. W. Chase Jr., J. L. Curnutt, R. A. McDonald, and A. N. Syverud, “JANAF thermochemical tables, 1978 supplement,” J. Phys. Chem. Ref. Data 7, 793 (1978); M. W. Chase Jr., J. L. Curnutt, J. R. Downey Jr., R. A. McDonald, A. N. Syverud, and E. A. Valenzuela, “JANAF thermochemical tables, 1982 supplement,” J. Phys. Chem. Ref. Data 11, 695 (1982).

    Article  Google Scholar 

  14. M. Ya. Shpirt, V. R. Kler, and I. Z. Pertsikov, Inorganic Components of Solid Fuels (Khimiya, Moscow, 1990) [in Russian].

    Google Scholar 

  15. N. M. Kortsenshtein, E. V. Samuilov, and L. N. Lebedeva, “Modeling the condensed phase formation in the bulk of the coal combustion products. Thermodynamic stage,” Gorenie Plazmokhim. 7(2), 110–116 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Kortsenshtein.

Additional information

Original Russian Text © L.N. Lebedeva, N.M. Kortsenshtein, E.V. Samuilov, 2014, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, L.N., Kortsenshtein, N.M. & Samuilov, E.V. Thermodynamic assessment of the possibility of emission of submicron particles in the process of coal combustion. Therm. Eng. 61, 911–916 (2014). https://doi.org/10.1134/S0040601514120052

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601514120052

Keywords

Navigation