Skip to main content
Log in

Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 2: Combustion of brown coal from the Kansk-Achinsk Basin in a vortex furnace

  • Steam Boilers, Power-Plant Fuel, Burner Devices, and Auxiliary Equipment of Boilers
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

This paper continues with the description of study results for an improved-design steam boiler vortex furnace, for the full-scale configuration of which the numerical modeling of a three-dimensional turbulent two-phase reacting flow has been performed with allowance for all the principal heat and mass transfer processes in the torch combustion of pulverized Berezovsk brown coal from the Kansk-Achinsk Basin. The detailed distributions of velocity, temperature, concentration, and heat flux fields in different cross sections of the improved vortex furnace have been obtained. The principal thermoengineering and environmental characteristics of this furnace are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Krasinskii, V. V. Salomatov, I. S. Anufriev, O. V. Sharypov, E. Yu. Shadrin, and Yu. A. Anikin, “Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 1: Flow aerodynamics in a vortex furnace,” Therm. Eng. 62 (2), 117–122 (2015).

    Article  Google Scholar 

  2. V. V. Salomatov, D. V. Krasinskii, Yu. A. Anikin, I. S. Anufriev, O. V. Sharypov, and Kh. Enkhzhargal, “Experimental and numerical study of the aerodynamic characteristics of vortex flows in the model of a steam generator vortex furnace,” Inzh.-Fiz. Zh. 85(2), 266–276 (2012).

    Google Scholar 

  3. T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, “A new k-ɛ eddy-viscosity model for high Reynolds number turbulent flows—model development and validation,” Comput. Fluids 24(3), 227–238 (1995).

    Article  MATH  Google Scholar 

  4. A. M. Bubenchikov and A. V. Starchenko, “Numerical analysis of the aerodynamics and combustion of a turbulent pulverized-coal burner jet,” Combust., Explos. Shock Waves 33(1), 51–59 (1997).

    Article  Google Scholar 

  5. A. A. Dekterev, A. A. Gavrilov, M. Yu. Chernetskii, and N. S. Surzhikova, “A mathematical model of aerodynamics and heat exchange in pulverized-coal furnaces,” Tepl. Protsessy Tekh. 3(3), 140–143 (2011).

    Google Scholar 

  6. V. F. Konyashkin, “Modeling of physical processes in a circular furnace using the FLUENT software,” in Proceedings of VI All-Russia Conference “Combustion of Solid Fuel” (Novosibirsk, Russia, November 10–13, 2006), Part 1, pp. 170–177.

    Google Scholar 

  7. FLUENT 6.3 User’s Guide (Fluent Inc., 2006).

  8. Thermal Design of Boilers: Standard Method (Izd-vo NPO TsKTI, St. Petersburg, 1998) [in Russian].

  9. B. F. Magnussen and B. H. Hjertager, “On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion,” Proc. Combust. Inst. 16(1), 719–729 (1977).

    Article  Google Scholar 

  10. T. Peeters, “Numerical modeling of turbulent naturalgas diffusion flames,” PhD thesis (Delft, The Netherlands, 1995).

    Google Scholar 

  11. F. L. Dryer and I. Glassman, “High temperature oxidation of CO and CH4,” Proc. Combust. Inst. 14(1), 987–1003 (1973).

    Article  Google Scholar 

  12. T. F. Smith, Z. F. Shen, and J. N. Friedman, “Evaluation of coefficients for the weighted sum of gray gases model,” J. Heat Transfer 104(4), 602–608 (1982).

    Article  Google Scholar 

  13. E. P. Volkov, L. I. Zaichik, and V. A. Pershukov, Modeling of Solid Fuel Combustion (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  14. V. V. Pomerantsev, K. M. Aref’ev, D. B. Akhmedov, M. N. Konovach, Yu. N. Korchunov, Yu. A. Rundygin, S. L. Shagalova, and S. M. Shestakov, Fundamentals of Practical Combustion Theory: Textbook (Energoatomizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  15. S. V. Patankar, Numerical Heat Transfer and Fluid Flow (McGraw-Hill, New York, 1980).

    MATH  Google Scholar 

  16. R. I. Issa, “Solution of implicitly discretized fluid flow equations by operator splitting,” J. Comput. Phys. 62(1), 40–65 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  17. C. T. Crowe, M. P. Sharma, and D. E. Stock, “The particle-source-in-cell (PSI-CELL) model for gas-droplet flows,” J. Fluids Eng. 99(2), 325–332 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Krasinsky.

Additional information

Original Russian Text © D.V. Krasinsky, V.V. Salomatov, I.S. Anufriev, O.V. Sharypov, E.Yu. Shadrin, Yu.A. Anikin, 2015, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasinsky, D.V., Salomatov, V.V., Anufriev, I.S. et al. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 2: Combustion of brown coal from the Kansk-Achinsk Basin in a vortex furnace. Therm. Eng. 62, 208–214 (2015). https://doi.org/10.1134/S0040601515030040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601515030040

Keywords

Navigation