Skip to main content
Log in

On the existence of generalized gibbs measures for the one-dimensional p-adic countable state Potts model

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider the one-dimensional countable state p-adic Potts model. A construction of generalized p-adic Gibbs measures depending on weights λ is given, and an investigation of such measures is reduced to the examination of a p-adic dynamical system. This dynamical system has a form of series of rational functions. Studying such a dynamical system, under some condition concerning weights, we prove the existence of generalized p-adic Gibbs measures. Note that the condition found does not depend on the values of the prime p, and therefore an analogous fact is not true when the number of states is finite. It is also shown that under the condition there may occur a phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio and W. Karwowski, “A Random Walk on p-adics—the Generator and Its Spectrum,” Stochastic Processes Appl. 53, 1–22 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Albeverio and X. Zhao, “On the Relation between Different Constructions of Random Walks on p-adics,” Markov Processes Relat. Fields 6, 239–255 (2000).

    MATH  MathSciNet  Google Scholar 

  3. S. Albeverio and X. Zhao, “Measure-Valued Branching Processes Associated with Random Walks on p-adics,” Ann. Probab. 28, 1680–1710 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Ya. Aref’eva, B. Dragović, and I. V. Volovich, “On the p-adic Summability of the Anharmonic Oscillator,” Phys. Lett. B 200, 512–514 (1988).

    Article  MathSciNet  Google Scholar 

  5. I. Ya. Aref’eva, B. Dragovich, P. H. Frampton, and I. V. Volovich, “The Wave Function of the Universe and p-adic Gravity,” Int. J. Mod. Phys. A 6(24), 4341–4358 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  6. D. K. Arrowsmith and F. Vivaldi, “Geometry of p-adic Siegel Discs,” Physica D 71, 222–236 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  7. V. A. Avetisov, A. H. Bikulov, and S. V. Kozyrev, “Application of p-adic Analysis to Models of Breaking of Replica Symmetry,” J. Phys. A: Math. Gen. 32(50), 8785–8791 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  8. E. G. Beltrametti and G. Cassinelli, “Quantum Mechanics and p-adic Numbers,” Found. Phys. 2, 1–7 (1972).

    Article  MathSciNet  Google Scholar 

  9. R. L. Benedetto, “Hyperbolic Maps in p-adic Dynamics,” Ergodic Theory Dyn. Syst. 21, 1–11 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Del Muto and A. Figà-Talamanca, “Diffusion on Locally Compact Ultrametric Spaces,” Expo. Math. 22, 197–211 (2004).

    MATH  MathSciNet  Google Scholar 

  11. R. L. Dobrushin, “The Problem of Uniqueness of a Gibbsian Random Field and the Problem of Phase Transitions,” Funkts. Anal. Prilozh. 2(4), 44–57 (1968) [Funct. Anal. Appl. 2, 302–312 (1968)].

    Google Scholar 

  12. R. L. Dobrushin, “Prescribing a System of Random Variables by Conditional Distributions,” Teor. Veroyatn. Primen. 15(3), 469–497 (1970) [Theor. Probab. Appl. 15, 458–486 (1970)].

    MathSciNet  Google Scholar 

  13. B. Dragovich, A. Khrennikov, and D. Mihajlović, “Linear Fractional p-adic and Adelic Dynamical Systems,” Rep. Math. Phys. 60(1), 55–68 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  14. P. G. O. Freund and M. Olson, “Non-Archimedean Strings,” Phys. Lett. B 199, 186–190 (1987).

    Article  MathSciNet  Google Scholar 

  15. N. Ganikhodjaev, “The Potts Model on Zd with Countable Set of Spin Values,” J. Math. Phys. 45, 1121–1127 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  16. N. N. Ganikhodjaev, F. M. Mukhamedov, and U. A. Rozikov, “Phase Transitions in the Ising Model on Z over the p-adic Number Field,” Uzb. Mat. Zh., No. 4, 23–29 (1998).

  17. H.-O. Georgii, Gibbs Measures and Phase Transitions (W. de Gruyter, Berlin, 1988).

    MATH  Google Scholar 

  18. M. Herman and J.-C. Yoccoz, “Generalizations of Some Theorems of Small Divisors to Non-Archimedean Fields,” in Geometric Dynamics: Proc. Int. Symp., Rio de Janeiro, 1981 (Springer, Berlin, 1983), Lect. Notes Math. 1007, pp. 408–447.

    Google Scholar 

  19. M. Khamraev and F. Mukhamedov, “On p-adic λ-Model on the Cayley Tree,” J. Math. Phys. 45, 4025–4034 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Kaneko and A. N. Kochubei, “Weak Solutions of Stochastic Differential Equations over the Field of p-adic Numbers,” Tohoku Math. J. 59(4), 547–564 (2007); arXiv: 0708.1706.

    Article  MATH  MathSciNet  Google Scholar 

  21. W. Karwowski and R. Vilela Mendes, “Hierarchical Structures and Asymmetric Stochastic Processes on p-adics and Adeles,” J. Math. Phys. 35, 4637–4650 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Khrennikov, “p-Adic Valued Probability Measures,” Indag. Math., New Ser. 7, 311–330 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer, Dordrecht, 1994).

    MATH  Google Scholar 

  24. A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer, Dordrecht, 1997).

    MATH  Google Scholar 

  25. A. Yu. Khrennikov and S. V. Kozyrev, “Replica Symmetry Breaking Related to a General Ultrametric Space. I: Replica Matrices and Functionals,” Physica A 359, 222–240 (2006); “II: RSB Solutions and the n → 0 Limit,” Physica A 359, 241–266 (2006); “III: The Case of General Measure,” Physica A 378, 283-298 (2007).

    Article  Google Scholar 

  26. A. Yu. Khrennikov, F. M. Mukhamedov, and J. F. F. Mendes, “On p-adic Gibbs Measures of the Countable State Potts Model on the Cayley Tree,” Nonlinearity 20, 2923–2937 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Yu. Khrennikov and M. Nilsson, p-Adic Deterministic and Random Dynamics (Kluwer, Dordrecht, 2004).

    MATH  Google Scholar 

  28. A. Khrennikov, S. Yamada, and A. van Rooij, “The Measure-Theoretical Approach to p-adic Probability Theory,” Ann. Math. Blaise Pascal 6, 21–32 (1999).

    MATH  Google Scholar 

  29. N. Koblitz, p-Adic Numbers, p-adic Analysis, and Zeta-Functions (Springer, Berlin, 1977).

    MATH  Google Scholar 

  30. A. N. Kochubei, Pseudo-differential Equations and Stochastics over Non-Archimedean Fields (M. Dekker, New York, 2001), Pure Appl. Math. 244.

    MATH  Google Scholar 

  31. S. V. Kozyrev, “Wavelets and Spectral Analysis of Ultrametric Pseudodifferential Operators,” Mat. Sb. 198(1), 103–126 (2007) [Sb. Math. 198, 97–116 (2007)].

    MathSciNet  Google Scholar 

  32. S. V. Ludkovsky, “Non-Archimedean Valued Quasi-invariant Descending at Infinity Measures,” arXiv:math/0405231.

  33. S. Ludkovsky and A. Khrennikov, “Stochastic Processes on Non-Archimedean Spaces with Values in Non-Archimedean Fields,” Markov Processes Relat. Fields 9, 131–162 (2003).

    MATH  MathSciNet  Google Scholar 

  34. E. Marinary and G. Parisi, “On the p-adic Five-Point Function,” Phys. Lett. B 203, 52–54 (1988).

    Article  MathSciNet  Google Scholar 

  35. F. Mukhamedov and U. Rozikov, “On Rational p-adic Dynamical Systems,” Methods Funct. Anal. Topol. 10(2), 21–31 (2004); arXiv:math/0511205.

    MATH  MathSciNet  Google Scholar 

  36. F. M. Mukhamedov and U. A. Rozikov, “On Gibbs Measures of p-adic Potts Model on the Cayley Tree,” Indag. Math., New Ser. 15, 85–99 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  37. F. Mukhamedov and U. Rozikov, “On Inhomogeneous p-adic Potts Model on a Cayley Tree,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8, 277–290 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  38. F. M. Mukhamedov, U. A. Rozikov, and J. F. F. Mendes, “On Phase Transitions for p-adic Potts Model with Competing Interactions on a Cayley Tree,” in p-Adic Mathematical Physics: Proc. 2nd Int. Conf., Belgrade, 2005 (Am. Inst. Phys., Melville, NY, 2006), AIP Conf. Proc. 826, pp. 140–150.

    Google Scholar 

  39. J. Rivera-Letelier, “Dynamique des fonctions rationnelles sur des corps locaux,” in Geometric Methods in Dynamics. II (Soc. Math. France, Paris, 2003), Astérisque 287, pp. 147–230.

    Google Scholar 

  40. A. C. M. van Rooij, Non-Archimedean Functional Analysis (M. Dekker, New York, 1978).

    MATH  Google Scholar 

  41. W. H. Schikhof, Ultrametric Calculus (Cambridge Univ. Press, Cambridge, 1984).

    MATH  Google Scholar 

  42. J. H. Silverman, The Arithmetic of Dynamical Systems (Springer, New York, 2007), Grad. Texts Math. 241.

    MATH  Google Scholar 

  43. J. H. Silverman, “Bibliography for Arithmetic Dynamical Systems,” http://www.math.brown.edu/~jhs/ADSBIB.pdf

  44. A. N. Shiryaev, Probability (Nauka, Moscow, 1980; Springer, New York, 1984).

    MATH  Google Scholar 

  45. F. Spitzer, “Phase Transition in One-Dimensional Nearest-Neighbor Systems,” J. Funct. Anal. 20, 240–255 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  46. E. Thiran, D. Verstegen, and J. Weters, “p-Adic Dynamics,” J. Stat. Phys. 54, 893–913 (1989).

    Article  MATH  Google Scholar 

  47. F. Vivaldi, “Algebraic and Arithmetic Dynamics Bibliographical Database,” http://www.maths.qmw.ac.uk/~fv/database/algdyn.pdf

  48. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (Nauka, Moscow, 1994; World Sci., Singapore, 1994).

    Google Scholar 

  49. I. V. Volovich, “Number Theory as the Ultimate Physical Theory,” Preprint No. TH 4781/87 (CERN, Geneva, 1987).

    Google Scholar 

  50. I. V. Volovich, “p-Adic String,” Class. Quantum Grav. 4, L83–L87 (1987).

    Article  MathSciNet  Google Scholar 

  51. K. Yasuda, “Extension of Measures to Infinite Dimensional Spaces over p-adic Field,” Osaka J. Math. 37, 967–985 (2000).

    MATH  MathSciNet  Google Scholar 

  52. F. Y. Wu, “The Potts Model,” Rev. Mod. Phys. 54, 235–268 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Mukhamedov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhamedov, F. On the existence of generalized gibbs measures for the one-dimensional p-adic countable state Potts model. Proc. Steklov Inst. Math. 265, 165–176 (2009). https://doi.org/10.1134/S0081543809020163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543809020163

Keywords

Navigation