Skip to main content
Log in

Multidimensional and abstract probability

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Abstract probabilities are introduced as semiring algebraic structures that retain several properties of classical probabilities taking values in the real number interval [0, 1]. Compact probabilities and random variables with such probabilities are mainly studied. Analogs of the Borel-Cantelli lemma and of the law of large numbers are considered. New notions of superposition of probability spaces and superposition of random variables arise on the basis of the Cartesian product of abstract probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, “On the analogy between classical and quantum mechanics,” Rev. Mod. Phys. 17, 195–199 (1945).

    Article  MATH  MathSciNet  Google Scholar 

  2. R. P. Feynman, “Negative probability,” in Quantum Implications: Essays in Honour of David Bohm (Routledge & Kegan Paul, London, 1987), pp. 235–248.

    Google Scholar 

  3. Yu. P. Studnev, “Some generalizations of limit theorems in probability theory,” Teor. Veroyatn. Primen. 12(4), 729–734 (1967) [Theory Probab. Appl. 12, 668–672 (1967)].

    MathSciNet  Google Scholar 

  4. A. Yu. Khrennikov, “p-Adic probability theory and its applications. The principle of statistical stabilization of frequencies,” Teor. Mat. Fiz. 97(3), 348–363 (1993) [Theor. Math. Phys. 97, 1340–1348 (1993)].

    Article  MathSciNet  Google Scholar 

  5. L. S. Pontryagin, Continuous Groups, 3rd ed. (Nauka, Moscow, 1973); Engl. transl.: Topological Groups (Gordon and Breach, New York, 1986).

    Google Scholar 

  6. A. I. Kokorin and V. M. Kopytov, Linearly Ordered Groups (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  7. G. I. Arkhipov, V. A. Sadovnichii, and V. N. Chubarikov, Lectures on Mathematical Analysis (Drofa, Moscow, 2004) [in Russian].

    Google Scholar 

  8. R. von Mises, “Grundlagen der Wahrscheinlichkeitsrechnung,” Math. Z. 5, 52–99 (1919).

    Article  MATH  MathSciNet  Google Scholar 

  9. R. von Mises, Wahrscheinlichkeit, Statistik und Wahrheit (J. Springer, Wien, 1928).

    Book  MATH  Google Scholar 

  10. R. von Mises, Probability, Statistics and Truth, 2nd ed. (Dover, New York, 1981).

    MATH  Google Scholar 

  11. R. von Mises, Mathematical Theory of Probability and Statistics (Academic, New York, 1964).

    MATH  Google Scholar 

  12. R. von Mises and J. L. Doob, “Discussion of papers on probability theory,” Ann. Math. Stat. 12(2), 215–217 (1941).

    Article  Google Scholar 

  13. A. N. Kolmogorov, Foundations of the Theory of Probability (Chelsea, New York, 1956; Nauka, Moscow, 1974).

    MATH  Google Scholar 

  14. A. Yu. Khrennikov, “The Bernoulli theorem for probabilities that take p-adic values,” Dokl. Akad. Nauk 354(4), 461–464 (1997) [Dokl. Math. 55 (3), 402–405 (1997)].

    MathSciNet  Google Scholar 

  15. A. N. Shiryaev, Probability (Nauka, Moscow, 1980; Springer, New York, 1995).

    MATH  Google Scholar 

  16. Yu. V. Prokhorov and L. S. Ponomarenko, Lectures on Probability Theory and Mathematical Statistics, 2nd ed. (Mosk. Gos. Univ., Moscow, 2004) [in Russian].

    Google Scholar 

  17. V. M. Maximov, “Finite probabilistic structures,” Diskret. Mat. 20(3), 19–27 (2008) [Discrete Math. Appl. 18, 341–350 (2008)].

    Article  Google Scholar 

  18. V. M. Maximov, “Abstract models of probability,” in Foundations of Probability and Physics: Proc. Conf. Växjö, Sweden, 2000 (World Sci., River Edge, NJ, 2001), PQ-QP: Quantum Probab.White Noise Anal. 13, pp. 257–273.

    Google Scholar 

  19. V. M. Maximov, “The sets of abstract probabilities,” in Foundations of Probability and Physics-4: Proc. Conf. Växjö, Sweden, 2006 (Am. Inst. Phys., Melville, NY, 2007), AIP Conf. Proc. 889, pp. 353–361.

    Google Scholar 

  20. V. M. Maksimov, “Probability structures and probability sets,” Usp. Mat. Nauk 62(6), 181–182 (2007) [Russ. Math. Surv. 62, 1215–1217 (2007)].

    Article  MathSciNet  Google Scholar 

  21. V. M. Maximov, “Random variables with abstract and multidimensional probabilities,” in Proc. XI Int. Kolmogorov Lectures, Yaroslavl, 2013 (Yaroslav. Gos. Pedagog. Univ., Yaroslavl, 2013), pp. 101–105 [in Russian].

    Google Scholar 

  22. K. Yosida, Functional Analysis (Springer, Berlin, 1965; Mir, Moscow, 1967).

    Book  MATH  Google Scholar 

  23. V. M. Maximov, “A Bernoulli scheme with abstract probabilities,” Dokl. Akad. Nauk 458(5), 514–517 (2014) [Dokl. Math. 90 (2), 603–606 (2014)].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Maximov.

Additional information

Original Russian Text © V.M. Maximov, 2014, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Vol. 287, pp. 182–210.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maximov, V.M. Multidimensional and abstract probability. Proc. Steklov Inst. Math. 287, 174–201 (2014). https://doi.org/10.1134/S0081543814080112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543814080112

Keywords

Navigation