Skip to main content
Log in

Suspended sediment balance in Selenga delta at the late XX–early XXI century: Simulation by LANDSAT satellite images

  • Hydrophysical Processes
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Adaptation of the technology of water turbidity simulation by satellite image data for the delta of the Selenga R., the largest Baikal tributary is given. The results of processing a series of 82 Landsat images are used to assess the seasonal variability of suspended sediment balance in the Selenga delta in period from 1989 up to the present time. It is shown that, at higher water discharges (>1500 m3/s), suspended material will accumulate in the delta (on the average 15% of the total sediment transport at the delta head), governed by material precipitation within inundated floodplain area and lakes in the lower part of the delta. At lower water discharges (<1500 m3/s), a longitudinal increase in suspended sediment transport may take place, caused by setups from Baikal side and channel erosion in the branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevskii, N.I., Formirovanie i dvizhenie rechnykh nanosov (Formatioin and Motion of River Sediments), Moscow: Geograf. fak. MGU, 1998.

    Google Scholar 

  2. Alekseevskii, N.I., Bezozerova, E.V., Kasimov, N.S., and Chalov, S.R, Spatial variability of suspended sediment transport characteristics in the Selenga Basin during rain floods, Vestn. Mosk. Univ., Ser. Geogr., 2013, no. 3, pp. 60–65.

    Google Scholar 

  3. Alekseevskii, N.I. and Chalov, S.R., Gidrologicheskie funktsii razvetvlennogo rusla (Hydrological Functions of a Branching Channel), Moscow: Geograf. fak. MGU, 2009.

    Google Scholar 

  4. Atlas “Deshifrirovanie mnogozonal’nykh aerokosmicheskikh snimkov. Metodika i rezul’taty” (Interpretation of Polyzonal Aerospace Photographs), Moscow: Nauka, 1982.

  5. Il’icheva, E.I., Gagarinova, O.V., and Pavlov, M.V., Hydrologo-geomorphological analysis of landscape formation within the Selenga river delta, Geogr. Nat. Resour., 2015, no. 3, 263–270.

    Article  Google Scholar 

  6. Korytnyi, L.M., Il’icheva, E.A., Pavlov, M.V., and Amosova, I.Yu., Hydrologo-morphological approach to regionalization of the Selenga River Basin, Geogr. Nat. Resour., 2012, no. 3, pp. 212–217.

    Article  Google Scholar 

  7. Kravtsova, V.I. and Antonova, S.Yu., Applying polyzonal surveying to studying and mapping of shallows: case study of Northeastern Caspian Sea, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 1974, no. 1, pp. 78–88.

    Google Scholar 

  8. Labutina, I.A. and Saf’yanov, G.A., Studying sediment transport in rivers by aerospace images in the Kodor and Selenga, in Kosmicheskaya s"emka i tematicheskoe kartografirovanie (Space Surveying and Thematic Mapping), Moscow: Mock. Gos. Univ., 1980, pp. 118–125.

    Google Scholar 

  9. Labutina, I.A., Saf’yanov, G.A., and Sharlai, T.G, Studying Suspended Sediment Transport in Seas by Polyzonal Images, Dokl. Akad. Nauk SSSR, 1976, vol. 230, no. 2, pp. 861–864.

    Google Scholar 

  10. Lisitsyn, A.P, Marginal filter of oceans, Okeanologiya, 1994, vol. 34, no. 5, pp. 735–747.

    Google Scholar 

  11. Perel’man, A.I., Geokhimiya landshafta (Landscape Geochemistry), Moscow: Vyssh. shk, 1966.

    Google Scholar 

  12. Potemkina, T.G, Hydrological–morphological zoning of the mouth zone of the Selenga River, Water Resour., 2004, vol. 31, no. 1, pp. 11–16.

    Article  Google Scholar 

  13. Rossinskii, K.I. and Kuz’min, I.A., Balance method for calculating stream bed deformations, Tr. Gidroproekta (Transactions of Gidroproekt), vol. 12, 1964.

    Google Scholar 

  14. Chalov, S.R., Assessing river water turbidity by space images, Dvadtsat’ Chetvertoe plenarnoe mezhvuzovskoe koordinatsionnoe soveshchanie po probleme erozionnykh, ruslovykh i ust’evykh protsessov (Twenty Fourth Plenary Interuniversity Coordination Meeting on the Problem of Erosion, Channel, and Mouth Processes), Barnaul, 2009, pp. 218–220.

    Google Scholar 

  15. Chalov, S.R., Belozerova, E.V., and Gladkova, M.V., Monitoring surface water turbidity with the use of remote sensing methods, Resursy i kachestvo vod sushi: otsenka, prognoz i upravlenie (Resources and Quality of Continental Waters: Assessment, Prediction, and Management), Moscow: Inst. Vodn. Probl., Ross. Akad. Nauk, Geograf. Fak. MGU, 2012, pp. 260–273.

    Google Scholar 

  16. Carlson, P, Mapping surface current flow in turbid near-shore waters of the northeast Pasific, Geol. Surv. Profess., 1976, no. 929, pp. 328–329.

    Google Scholar 

  17. Chalov, S, Jarsjö, J., Kasimov, N., Romanchenko, A., Pietron, J., Thorslund, J., and Belozerova, E., Spatiotemporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia, Environ. Earth Sci., 2015, vol. 73, no. 2, pp. 663–680.

    Article  Google Scholar 

  18. Chalov, S., Thorslund, J., Kasimov, N.S., Nittrouer, J., Iliyecheva, E., Pavlov, M., Pietron, J., Shinkareva, G., Lychagin, M., Aybullatov, D., Kositsky, A., Tarasov, M., Akhtman, Y., Garmaev, E., Karthe, D., and Jarsjö, J, The Selenga River delta: a geochemical barrier protecting Lake Baikal waters, Regional Environ. Change, 2016, pp. 1–15.

    Google Scholar 

  19. Chavez, P.S., Image-based atmospheric correctionsrevisited and improved, Photogrammetric Engineering and Remote Sensing, 1996, vol. 62, no. 9, pp. 1025–1035.

    Google Scholar 

  20. Chen, Z., Muller-Karger, F., and Hu, C, Remote sensing of water clarity in Tampa Bay, Remote Sensing of Environ., 2007, vol. 109, no. 2, pp. 249–259.

    Article  Google Scholar 

  21. Curran, P.J. and Novo, E.M.M, The relationship between suspended sediment concentration and remotely sensed spectral radiance: a review, J. Coastal Res., 1988, pp. 351–368.

    Google Scholar 

  22. Harmä, P., Vepsäläinen, J., Hannonen, T., Pyhälahti, T., Kämäri, J., Kallio, K., Eloheimo, K., and Koponen, S, Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland, Sci. Total Environ., 2001, vol. 268, no. 1, pp. 107–121.

    Article  Google Scholar 

  23. Heim, B., Oberhaensli, H., Fietz, S., and Kaufmann, H, Variation in Lake Baikal’s phytoplankton distribution and fluvial input assessed by SeaWiFS satellite data, Glob. Planet. Change, 2005, no. 46, pp. 9–27.

    Article  Google Scholar 

  24. Hellweger, F.L., Schlosser, P., Lall, U., and Weissel, J.K, Use of satellite imagery for water quality studies in New York Harbor. Estuarine, Coastal and Shelf Sci., 2004, vol. 61, no. 3, pp. 437–448.

    Article  Google Scholar 

  25. Lavender, S., NagurCherukuru R.C., and Doxaran D. High Spatial Resolution Remote Sensing of the Plymouth Coastal Waters, CIMEL, 2001, vol. 2, pp. 438–442.

  26. Nduaguba, D.C, Use of Landsat-1 standard data products for multispectral radiometric analysis of sedimentation in Kainji reservoir, Int. Sci.-Technol. Conf. Space, 1976, vol. 16, pp. 45–52.

    Google Scholar 

  27. Nutchanart, S., Surakit, K., and Thianpopirug, S, Influence of atmospheric correction and number of sampling points on the accuracy of water clarity assessment using remote sensing application, J. Hydrol., 2011, vol. 401, nos. 3–4, pp. 203–220.

    Google Scholar 

  28. Pavelsky, T.M. and Smith, L.C, Remote sensing of suspended sediment concentration, flow velocity and lake recharge in the Peace-Athabaska delta. Canada, Water Resour. Res., 2009, no. 45, pp. 110–126.

    Google Scholar 

  29. Ruddick, K., Nechad, B., Neukermans, G., Park, Y., Doxaran, D., Sirjacobs, D., and Beckers, J.M, Remote sensing of suspended particulate matter in turbid waters: state of the art and future perspectives, in Proc. Ocean Optics XIX Conf. Barga, 2008, pp. 6–10.

    Google Scholar 

  30. Sawaya, K.E., Olmanson, L.G., Heinert, N.J., Brezonik, P.L., and Bauer, M.E, Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery, Remote Sensing of Environ, 2003, vol. 88, no. 1, pp. 144–156.

    Article  Google Scholar 

  31. Wang, J.J., Lu, X.X., Liew, S.C., and Zhou, Y, Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: An example from the Yangtze River, China, Earth Surface Processes and Landforms, 2009, vol. 34, no. 8, pp. 1082–1092.

    Article  Google Scholar 

  32. Zhou, W., Wang, S., Zhou, Y., and Troy, A, Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat-5 TM data, Int. J. Remote Sensing, 2006, vol. 27, no. 6, pp. 1177–1191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Chalov.

Additional information

Original Russian Text © S.R. Chalov, V.O. Bazilova, M.K. Tarasov, 2017, published in Vodnye Resursy, 2017, Vol. 44, No. 3, pp. 332–339.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalov, S.R., Bazilova, V.O. & Tarasov, M.K. Suspended sediment balance in Selenga delta at the late XX–early XXI century: Simulation by LANDSAT satellite images. Water Resour 44, 463–470 (2017). https://doi.org/10.1134/S0097807817030071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807817030071

Keywords

Navigation