Skip to main content
Log in

Influence of the Technical Ecosystem of the Electric Power Plant (Vladivostok) on the Phytoplankton of the Japanese Sea

  • HYDROCHEMISTRY, HYDROBIOLOGY, ENVIRONMENTAL ASPECTS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The structure of phytoplankton of the Sea of Japan (Peter the Great Bay), located in the zone influenced by the technical ecosystem of Vladivostok thermal electric power station (VTES-2) (Vladivostok), has been studied throughout the year in the period 2014‒2015. Thermal pollution is two-stage: in the water intake trough, the water temperature rises by 2–3°C compared to background values; directly in the VTES-2 cooling system, by 10–12°C. In the first case, an increase compared to background (reference) areas in the abundance of algae and an extension of the summer–autumn vegetation season of phytoplankton by 1.5–2.0 months were noted. After passing through the cooling system of the power plant, the species composition of phytoplankton changes insignificantly (similarity coefficient value 0.82), but is enriching in benthic diatoms (22 species) from the biofouling of the intake trough. The difference in the values of indices of the total density and biomass of microalgae before and after passing through the cooling system of the power plant during the year did not exceed one order of magnitude. The study revealed that the VTES-2 technical ecosystem significantly affects the quantitative change in phytoplankton at the stage of long-term, but insignificant, thermal effect in the water intake trough, as well as during short-term passage through the cooling system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Begun, A.A., Phytoplankton of the Zolotoy Rog Cove and the Ussuri Bay (Sea of Japan) in the conditions of anthropogenic pollution, Izv. Tikhook. Inst. Rybn. Khoz. Okeanogr., 2004, vol. 138, pp. 330–344.

    Google Scholar 

  2. Begun, A.A., Orlova, T.Yu., and Zvyagintsev, A.Yu., Phytoplankton of the Amur Bay of the Sea of Japan in the region of Vladivostok City, Algologiya, 2003, vol. 13, no. 2, pp. 204–215.

    Google Scholar 

  3. Begun, A.A., Zvyagintsev, A.Yu., and Emel’yanov, A.A., Microalgae od periphyton in the conditions of aquarium complex of FEB RAS (Vladivostok City, Russkii Island), Voda: Khimiya i ekologiya, 2016, no. 3, pp. 42–52.

  4. Belan, T. A., Specific features of abundance and species composition of benthos in the conditions of pollution: Peter the Great Bay, Sea of Japan, Extended Abstract of Cand. Sci. (Biol) Dissertation, Vladivostok: DVNIGMI, 2001.

  5. Belogurova, L.S. and Zvyagintsev, A.Yu., Dynamics of meio- and macrofauna of fouling in the conditions of chronic anthropogenic pollution (Zolotoy Rog Cove, Seas of Japan), Izv. Tikhook. Inst. Rybn. Khoz. Okeanogr., 2006, vol. 144, pp. 331–350.

    Google Scholar 

  6. Vinokurova, T.T., On the seasonal and short-periodic variability of hydrological characteristics in the Peter the Great Bay, Izv. Tikhook. Inst. Rybn. Khoz. Okeanogr., 1977, vol. 101, pp. 7–12.

    Google Scholar 

  7. Zvyagintsev, A.Yu. and Moshchenko, A.V., Morskie tekhnoekosistemy energeticheskikh stantsii (Marine techno-ecosystems of energetic stations), Vladivostok: Dal’nauka, 2010.

  8. Zvyagintsev, A.Yu., Ivin, V.V., Kashin, I.A., et al., Alien species in the Far-Eastern marine state biosphere reserve, Izv. Tikhook. Inst. Rybn. Khoz. Okeanogr., 2012, vol. 170, pp. 60–81.

    Google Scholar 

  9. Koryakova, M.D., Nikitin, V.M., Zvyagintsev, A. Yu., and Belogurova, L. S., Influence of polluted harbor waters on fouling and corrosion of high alloy steel, Biol. Morya, 2002, vol. 28, no. 2, pp. 138–142.

    Google Scholar 

  10. Mileikovskii, S.A., Influence of passing through the system of water colling of coastal electric power stations of industrial enterprises on the reproduction and productivity of marine and estuarine plankton, benthos and nekton, in Obrastanie i biokorroziya v vodnoi srede (Fouling and biocorrosion in aquatic environment), Moscow: Nauka, 1981, pp. 131–137.

  11. Mokievskaya, V.V., Chemical characteristics of water masses, in Osnovnye cherty geologii i gidrologii Yaponskogo morya (Main features of geology and hydrology of the Sea of Japan), Moscow, 1961, part 2, pp. 122–125.

  12. Morozova, T.V., Selina, M.S., and Orlova, T.Yu., Phytoplankton in the region of mariculture farm in the Minonosok Cove of the Sea of Japan Posyet Bay, Biol. Morya, 2002, vol. 28, no. 2, pp. 107–112.

    Google Scholar 

  13. Novoselova, T.N. and Protasov, A.A., Phytoplankton of cooling waterbodies of the techno-ecosystems of nuclear and heating power electric stations (Review), Gidrobiol. Zh., 2014, vol. 50, no. 6, pp. 40–59.

    Google Scholar 

  14. Ogorodnikova, A.A., Ekologo-ekonomicheskaya otsenka vozdeistviya beregovykh istochnikov zagryazneniya na prirodnuyu sredu i bioresursy zaliva Petra Velikogo (Ecological-economical assessment of the effect of coastal sources of pollution on the environment nad biological resources of the Peter the Great Bay), Vladivostok: TINRO, 2001.

  15. Protasov, A.A., Silaeva, A.A., Yarmoshenko, L.P., et al., Hydrobiological studies of the techno-ecosystem of the Zaporozhskaya nuclear power station, Gidrobiol. Zh., 2013, vol. 49, no. 2, pp. 78–94.

    Google Scholar 

  16. Ryabushko, L.I. and Begun, A.A., Diatomovye Vodorosli mikrofitobentosa Yaponskogo morya. T. 1. (Diatom algae of microphytobenthos of the Sea of Japan. V. 1.): Sevastopol’; Simferopol’ N. Orianda, 2015, vol. 288.

  17. Stonik, I.V. and Orlova, T.Yu., Summer–autumn phytoplankton in the Amur Bay of the Sea of Japan, Biol. Morya, 1998, vol. 24, no. 4, pp. 205–211.

    Google Scholar 

  18. Shevchenko, O.G., Ponomareva, A.A., and Maslenikov, S.I., Monitoring of the phytoplankton on the area of mariculture farm in the Rifovaya Cove (Peter the Great Bay of the Sea of Japan), Voprosy Rybolovstva, 2014, vol. 15, no. 3, pp. 285–294.

    Google Scholar 

  19. Choi, K.H., Kim, Y.O., Lee, J. B., et al., Thermal impacts of a coal power plant on the plankton in an open coastal water environment, J. Mar. Sci. Technol, 2012, vol. 20, pp. 187–194.

    Google Scholar 

  20. Degerlund, M. and Eilertsen, H.C., Main species characteristics of phytoplankton spring blooms in the Atlantic and Arctic waters (68°–80° N), Estuaries and Coasts, 2010, vol. 33, pp. 242–269.

    Article  Google Scholar 

  21. Du, G.Y., Son, M., Yun, M., et al., Microphytobenthic biomass and species composition in intertidal flats of the Nakdong River estuary, Korea, Estuarine, Coastal Shelf Sci, 2009, vol. 82, pp. 663–672.

    Article  Google Scholar 

  22. Guiry, M.D. and Guiry, G.M., http://www.algaebase.org. (data of enquiry: 12.02.2019)

  23. Identifying of marine phytoplankton / Ed. Tomas C.R. St.-Petersburg, USA: Academic Press, 1997. 858 p.

  24. Jiang, Z.B., Zeng, J.N., Chen, Q.Z., et al., Dynamic change of phytoplankton cell density after thermal shock and chlorination in a subtropical bay in china, J. Plant Ecol, 2008, vol. 32, pp. 1386–1396.

    Google Scholar 

  25. Kasim, M. and Mukai, H., Contribution of benthic and epiphytic diatoms to clam and oyster production in the Akkeshi-Ko estuary, J. Oceanogr, 2006, vol. 62, pp. 267–281.

    Article  Google Scholar 

  26. Lee, C.W., The effect of thermal effluent on marine diatoms and bacteria, Malaysian J. Sci, 2003, vol. 22, pp. 23–27.

    Google Scholar 

  27. Lee, S.D., Yun, S.M., Park, J.S., and Lee, J.H., Floristic survey of diatom in the three islands (Baeknyeong, Daecheong, Socheong) from Yellow Sea of Korea, J. Ecol. Environ, 2015.

  28. Liu, S., Huang, H., Huang, L.M., et al., Ecological response of phytoplankton to the operation of Daya Bay nuclear power station, Chinese J. Mar. Environ. Sci, 2006, vol. 25, pp. 9–12.

    Google Scholar 

  29. Liu, J.Y., Checklist of biota of Chinese seas, Beijing: Sci. Press, Acad. Sinica, 2008, p. 1267.

    Google Scholar 

  30. Lo, W.T., Hwang, J.J., Hsu, P.K., et al., Seasonal and spatial distribution of phytoplankton in the waters off nuclear power plants, north of Taiwan, J. Mar. Sci. Technol, 2004, vol. 12, pp. 372–379.

    Google Scholar 

  31. Ma, Z.L., Gao, K.S., Li, W., et al., Impacts of chlorination and heat shocks on growth, pigments and photosynthesis of Phaeodactylum tricornutum (Bacillariophyceae), J. Experimental Mar. Biol. Ecol, 2011, vol. 397, pp. 214–219.

    Article  Google Scholar 

  32. Maestini, S.Y., Robert, J.-M., and Fruguet, A., Simultaneous uptake of ammonium and nitrate by oyster-pond algae, Marin. Biol. Lett, 1982, vol. 3, no. 3, pp. 143–153.

    Google Scholar 

  33. Moorthi, S., Caron, D.A., Gast, R.J., and Sanders, R.W., Mixotrophy: a widespread and important ecological strategy for planktonic and sea-ice nanoflagellates in the ross sea, antarctica, Aquatic Microbial Ecol, 2009, vol. 54, pp. 269–277.

    Article  Google Scholar 

  34. Mitra, A., Flynn, K.J., Burkholder, M., et al., The role of mixotrophic protists in the biological carbon pump, Biogeosci, 2014, vol. 11, pp. 995–1005.

    Article  Google Scholar 

  35. Park, J., Khim, J.S., Ohtsuka, T., et al., Diatom assemblages on Nanaura mudflat, Ariake Sea, Japan: with reference to the biogeography of marine benthic diatoms in Northeast Asia, Botanical Studies, 2012, vol. 53, pp. 105–124.

    Google Scholar 

  36. Poornima, E.H., Rajaduraia, M., Rao, T.S., et al., Impact of thermal discharge from a tropical coastal power plant on phytoplankton, J. Thermal Biol, 2005, vol. 30, pp. 307–316.

    Article  Google Scholar 

  37. Rajadurai, M., Poornima, E.H., Narasimhanb, S.V., et al., Phytoplankton growth under temperature stress: laboratory studies using two diatoms from a tropical coastal power station site, J. Thermal Biol, 2005, vol. 30, pp. 299–305.

    Article  Google Scholar 

  38. Saravanane, N., Satpathy, K.K., Nair, K.V.K., and Durairaj, G., Preliminary observations on the recovery of tropical phytoplankton after entrainment, J. Thermal Biol, 1998, vol. 23, no. 2, pp. 91–97.

    Article  Google Scholar 

  39. Shevchenko, O.G., Shulkin, V.M., and Ponomareva, A.A., Phytoplankton and hydrochemical parameters near net pens with beluga whales in a shallow bay of the northwestern Sea of Japan, Thalassas: An Int. J. Mar. Sci, 2017.

  40. Skaloud, P., Rezacova, M., and Ellegaard, M., Spatial distribution of phytoplankton in spring 2004 along a transect in the eastern part of the North Sea, J. Oceanography, 2006, vol. 62, pp. 717–729.

    Article  Google Scholar 

  41. Stonik, I.V. and Orlova, T.Yu., Phytoplankton of the coastal waters off Vladivostok City (the north-western part of the East Sea) under eutrophic conditions, Ocean and Polar Res, 2002, vol. 24, no. 4, pp. 359–365.

    Article  Google Scholar 

  42. Sun, J. and Liu, D., Geometric models for calculating cell biovolume and surface area for phytoplankton, J. Plankton Res, 2003, no. 25, pp. 1331–1346.

  43. Zhao, L., Sun, J., Gao, Y., et al., Hippodonia fujiannensis sp. nov. (Bacilariophyceae), a new epipsammic diatom from the low intertidal zone, Fujian Province, China, Phytotaxa, 2017, vol. 295, no. 1, pp. 77–85.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the staff of the Resource Collection of the Center of Collective Use “Marine Biobank” of the Far Eastern branch, Russian Academy of Sciences, that maintains the cultures of microalgae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Begun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begun, A.A., Maslennikov, S.I. Influence of the Technical Ecosystem of the Electric Power Plant (Vladivostok) on the Phytoplankton of the Japanese Sea. Water Resour 48, 404–412 (2021). https://doi.org/10.1134/S0097807821030052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807821030052

Keywords:

Navigation