Skip to main content
Log in

Particle creation in the early Universe: Achievements and problems

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Results on particle creation from vacuum by the gravitational field of the expanding Friedmann Universe are presented. Finite results for the density of particles and the energy density for created particles are given for different exact solutions and different expansion modes of the Universe. The results are obtained for both conformal and nonconformal particles. The hypothesis on the origin of visible matter from the decay of created from vacuum superheavy particles identified with dark matter is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Grib and S. G. Mamayev, “On field theory in Friedmann space,” Sov. J. Nucl. Phys. (USA) 10, 722–725 (1970)].

    MathSciNet  Google Scholar 

  2. A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, Quantum Effects in Intensive External Fields (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  3. Ya. B. Zel’dovich and A. A. Starobinskii, “Particle production and vacuum polarization in an anisotropic gravitational field,” Sov. Phys. JETP 34, 1159–1166 (1972).

    ADS  Google Scholar 

  4. Selected Works of Ya. B. Zeldovich, Vol. II: Particlies, Nuclei, and the Universe (Nauka, Moscow, 1985; Princeton Univ., Princeton, 1993).

  5. K. P. Stanyukovich and V. N. Melnikov, Hydrodynamics, Fields and Constants in the Theory of Gravitation (Energoatomizdat, Moscow, 1983) [in Russian].

    Google Scholar 

  6. S. G. Mamayev, V. M. Mostepanenko, and A. A. Starobinskii, “Particle creation from the vacuum near a homogeneous isotropic singularity,” Sov. Phys. JETP 43, 823–830 (1976).

    ADS  Google Scholar 

  7. V. N. Lukash and A. A. Starobinskii, “The isotropization of the cosmological expansion owing to particle production,” Sov. Phys. JETP 39 742–747 (1974).

    ADS  Google Scholar 

  8. Ya. B. Zel’dovich and I. D. Novikov, The Structure and Evolution of the Universe (Nauka, Moscow, 1975; University of Chicago Press, Chicago, 1983).

    Google Scholar 

  9. S. Weinberg, The First Three Minutes. A Modern View of the Origin of the Universe (Basic Books, New York, 1977).

    Google Scholar 

  10. A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Lab. Publ., St. Petersburg, 1994).

    Google Scholar 

  11. A. A. Grib and V. Yu. Dorofeev, “Creation of particles and entropy in the early Friedmann Universe,” Int. J. Mod. Phys. D 3, 731–738 (1994).

    Article  ADS  Google Scholar 

  12. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).

    Book  MATH  Google Scholar 

  13. Yu. V. Pavlov, “Nonconformal scalar field in a homogeneous isotropic space and the Hamiltonian diagonalization method,” Theor. Math. Phys. 126, 92–100 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago, 1994).

    MATH  Google Scholar 

  15. A. D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic, New York, 1990).

    Book  Google Scholar 

  16. Yu. V. Pavlov, “Renormalization and dimensional regularization for a scalar field with Gauss-Bonnettype coupling to curvature,” Theor. Math. Phys. 140, 1095–1108 (2004).

    Article  MATH  Google Scholar 

  17. Yu. V. Pavlov, “Exact solutions and particle creation for nonconformal scalar fields in homogeneous isotropic cosmological models,” Theor. Math. Phys. 174, 438–445 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. L. P. Grishchuk and V. M. Yudin, “Conformal coupling of gravitational wave field to curvature,” J. Math. Phys. 21, 1168–1175 (1980).

    Article  ADS  Google Scholar 

  19. Yu. V. Pavlov, “Creation of the nonconformal scalar particles in nonstationary metric,” Int. J. Mod. Phys. A 17, 1041–1044 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  20. T. Imamura, “Quantized meson field in a classical gravitational field,” Phys. Rev. 118, 1430–1434 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. L. Parker, “Quantized fields and particle creation in expanding Universe. I,” Phys. Rev. 183, 1057–1068 (1969).

    Article  ADS  MATH  Google Scholar 

  22. A. A. Grib and Yu. V. Pavlov, “Is dark matter the relic of the primordialmatter that created the visible matter of the Universe?”, Grav. Cosmol. 14, 1–7 (2008).

    Article  ADS  MATH  Google Scholar 

  23. S. G. Mamayev and N. N. Trunov, “Space-time description of particle creation in gravitational and electromagnetic fields,” Sov. J. Nucl. Phys. 37, 952–957 (1983).

    Google Scholar 

  24. Yu. V. Pavlov, “Space-time description of scalar particle creation by a homogeneous isotropic gravitational field,” Grav. Cosmol. 14, 314–320 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Yu. V. Pavlov, “On particles creation and renormalization in a cosmological model with a Big Rip,” Grav. Cosmol. 15, 341–344 (2009).

    Article  ADS  MATH  Google Scholar 

  26. A. A. Grib and Yu. V. Pavlov, “Superheavy particles in Friedmann cosmology and the dark matter problem,” Int. J. Mod. Phys. D 11, 433–436 (2002).

    Article  ADS  MATH  Google Scholar 

  27. A. A. Grib and Yu. V. Pavlov, “Cold dark matter and primordial superheavy particles,” Int. J. Mod. Phys. A 17, 4435–4439 (2002).

    Article  ADS  MATH  Google Scholar 

  28. A. A. Grib and Yu. V. Pavlov, “Do active galactic nuclei convert dark matter into visible particles?” Mod. Phys. Lett. A 23, 1151–1159 (2008).

    Article  ADS  MATH  Google Scholar 

  29. A. A. Grib and Yu. V. Pavlov, “Active galactic nuclei and transformation of dark matter into visible matter,” Grav. Cosmol. 15, 44–48 (2009).

    Article  ADS  MATH  Google Scholar 

  30. A. A. Grib and V. Yu. Dorofeev, “Spontaneous symmetry breaking for long-wave gravitons in the early Universe,” Grav. Cosmol. 16, 85–91 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Grib.

Additional information

This issue of the journal is dedicated to the centenary of Prof. K.P. Staniukovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grib, A.A., Pavlov, Y.V. Particle creation in the early Universe: Achievements and problems. Gravit. Cosmol. 22, 107–115 (2016). https://doi.org/10.1134/S0202289316020067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289316020067

Keywords

Navigation