Skip to main content
Log in

Quantum billiards in multidimensional models with fields of forms on a product of Einstein spaces

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The gravitational D-dimensional model is considered, with l scalar fields, a cosmological constant and several forms. When a cosmological block-diagonal metric, defined on a product of an 1-dimensional interval and n oriented Einstein spaces, is chosen, an electromagnetic composite brane ansatz is adopted, and certain restrictions on the branes are imposed, the conformally covariant Wheeler–DeWitt (WDW) equation for the model is studied. Under certain restrictions, asymptotic solutions to the WDWequation are found in the limit of the formation of billiard walls which reduce the problem to the socalled quantum billiard on (n + l - 1)-dimensional hyperbolic space. Several examples of billiards in the model with {pmn} non-intersecting electric branes, e.g., corresponding to hyperbolic Kac–Moody algebras, are considered. In the classical case, any of these billiards describe a never-ending oscillating behavior of scale factors while approaching to the singularity, which is either spacelike or timelike. For n = 2 the model is completely integrable in the asymptotic regime in the clasical and quantum cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Chitré, “Investigation of vanishing of a horizon for Bianchi type IX (Mixmaster) Universe,” Ph. D. thesis, University of Maryland, technical Report No. 72–125 (1972).

    Google Scholar 

  2. V. A. Belinskii, E. M. Lifshitz, and I. M. Khalatnikov, Usp. Fiz. Nauk 102, 463 (1970); Adv. Phys. 31, 639 (1982).

    Article  ADS  Google Scholar 

  3. C. W. Misner, “Quantum cosmology,” Phys. Rev. 186, 1319 (1969).

    Article  ADS  MATH  Google Scholar 

  4. R. Graham, and P. Szepfalusy, “Quantum creation of the generic universe,” Phys. Rev. D 42, 2483–2490 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. A. Kirillov, “On quantum properties of the large scale inhomogeneities of metric in the vicinity of cosmological singularity,” Int. J. Mod. Phys. D 3, 431–441 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  6. B. S. DeWitt, “Quantum theory of gravity. I. The Canonical Theory,” Phys. Rev. 160, 1113–1148 (1967).

    Article  ADS  MATH  Google Scholar 

  7. V. D. Ivashchuk, A. A. Kirillov, and V. N. Melnikov, “On Stochastic Properties of Multidimensional Cosmological Models near the Singular Point,” Russian Physics Journal 37, 1102 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. V. D. Ivashchuk and V. N. Melnikov, “Billiard representation for multidimensional cosmology with multicomponent perfect fluid near the singularity,” Class. Quantum Grav. 12 (3), 809–826 (1995); grqc/9407028.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. A. Kirillov, “Reduction of additional dimensions in nonuniform quantum Kaluza-Klein cosmological model,” JETP Lett. 62, 89 (1995).

    ADS  MathSciNet  Google Scholar 

  10. V. D. Ivashchuk, and V. N. Melnikov, “Billiard representation for multidimensional cosmology with intersecting p-branes near the singularity,” J. Math. Phys. 41 (9), 6341–6363 (2000); hep-th/9904077.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. V. D. Ivashchuk, V. N. Melnikov, and D. Singleton, “On avoiding cosmological oscillating behavior for Sbrane solutions with diagonal metrics,” Phys. Rev. D 72, 103511 (2005); gr-qc/0509065.

    Article  ADS  Google Scholar 

  12. T. Damour and M. Henneaux, “Chaos in superstring cosmology,” Phys. Rev. Lett. 85, 920–923 (2000); hep-th/0003139.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. T. Damour and M. Henneaux, “Oscillatory behaviour in homogeneous string cosmology models,” Phys. Lett. B 488, 108–116 (2000); 491, 377 (E) (2000); arXiv: hep-th/0006171.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. T. Damour, M. Henneaux, and H. Nicolai, “Cosmological billiards, topical review,” Class. Quantum Grav. 20, R145–R200 (2003); hep-th/0212256.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. T. Damour and M. Henneaux, “E 10, BE 10, and arithmetical chaos in superstring cosmology,” Phys. Rev. Lett. 86, 4749–4752 (2001); hep-th/0012172.

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Henneaux, D. Persson, and P. Spindel, “Spacelike singularities, and hidden symmetries of gravity,” Living Rev. Relativity 11, 1–228 (2008).

    Article  ADS  MATH  Google Scholar 

  17. V. G. Kac, Infinite-dimensional Lie Algebras (Cambridge University Press, Cambridge, 1990).

    Book  MATH  Google Scholar 

  18. C. Saçlioğlu, “Dynkin diagram for hyperbolic Kac–Moody algebras,” J. Phys. A 22 (18), 3753–3769 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. S. de Buyl and C. Schomblond, “Hyperbolic Kac–Moody algebras, and Einstein billiards,” J. Math. Phys. 45, 4464–4492 (2004); hep-th/0403285.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. L. Carbone, S. Chung, L. Cobbs, R. McRae, D. Nandi, Y. Naqvi, and D. Penta, “Classification of hyperbolic Dynkin diagrams, root lengths, and Weyl group orbits,” J. Phys. A: Math. Theor. 43, 155209 (30pp) (2010); arXiv:1003.0564.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. T. Damour, M. Henneaux, B. Julia, and H. Nicolai, “Hyperbolic Kac–Moody algebras, and chaos in Kaluza-Klein models,” Phys. Lett. B 509, 323–330 (2001); hep-th/0103094.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. V. D. Ivashchuk and V. N. Melnikov, “On billiard approach in multidimensional cosmological models,” Grav. Cosmol. 15 (1), 49–58 (2009); arXiv: 0811. 2786.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. Kleinschmidt, M. Koehn, and H. Nicolai, “Supersymmetric quantum cosmological billiards,” Phys. Rev. D 80, 061701 (2009); arxiv: 0907.3048.

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Kleinschmidt and H. Nicolai, “Cosmological quantum billiards,” arxiv: 0912.0854.

  25. V. D. Ivashchuk, and V. N. Melnikov, “Quantum billiards in multidimensional models with fields of forms,” Grav. Cosmol. 19 (3), 171–177 (2013); arxiv: 1306. 6521.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. C. W. Misner, “Minisuperspace,” in Magic without Magic: John Archibald Wheeler, ed. J. R. Klauder (Freeman, San Francisko, 1972), pp. 441–473.

    Google Scholar 

  27. J. J. Halliwell, “Derivation of the Wheeler-De Witt equation from a path integral for minisuperspace models,” Phys. Rev. D 38, 2468 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  28. V. D. Ivashchuk, V. N. Melnikov, and A. I. Zhuk, “On Wheeler-DeWitt equation in multidimensional cosmology,” Nuovo Cimento B 104 (5), 575–581 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  29. P. Hájiček and K. V. Kuchař, “Constraint quantization of parametrized relativistic gauge systems in curved spacetimes,” Phys. Rev. D 41, 1091–1104 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. V. D. Ivashchuk and V. N. Melnikov, “Multidimensional classical, and quantum cosmology with intersecting p-branes,” J. Math. Phys. 39, 2866–2889 (1998); hep-th/9708157.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. V. D. Ivashchuk and V. N. Melnikov, “Quantum billiards in multidimensional models with branes,” Eur. Phys. J. C 74, 2805, (2014); arXiv:1310.4451.

    Article  ADS  Google Scholar 

  32. V. D. Ivashchuk and V. N. Melnikov, “Sigmamodel for the generalized composite p-branes,” Class. Quantum Grav. 14, 3001–3029 (1997); 15, 3941–3942 (1998); hep-th/9705036.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. V. D. Ivashchuk, “On exact solutions in multidimensional gravity with antisymmetric forms,” The Gravitational Constant: Generalized Gravitational Theories, and Experiments, Ed. by V. de Sabbata, G. T. Gillies, and V. N. Melnikov (Kluwer, Dordrecht, 2004), pp. 205–231; arxiv:gr-qc/0310114.

    Chapter  Google Scholar 

  34. U. Bleyer, V. D. Ivashchuk, V. N. Melnikov, and A. I. Zhuk, “Multidimensional classical, and quantum wormholes in models with cosmological constant,” Nucl. Phys. B 429, 177–204 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. P. Klinger, “Timelike singularities, and Hamiltonian cosmological billiards,” arXiv:1512.03302.

  36. E. Shaghoulian and H. Wang, “Timelike BKL singularities, and chaos in AdS/CFT,” arXiv:1601.02599.

  37. S. L. Parnovsky, “Gravitation fields near the naked singularities of the general type,” Physica A: StatisticalMechanics, and Its Applications 104 (1–2), 210–222 (1980).

    Article  ADS  Google Scholar 

  38. S. L. Parnovsky, “A general solution of gravitational equations near their singularities,” Class. Quantum Grav. 7 (4), 571–575 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  39. O. M. Lecian, “Periodic orbits in cosmological billiards: the Selberg trace formula for asymptotic Bianchi IX universes, evidence for scars in the wavefunction of the quantum universe, and largescale structure anisotropies of the present universe,” arxiv:1311.0488.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Ivashchuk.

Additional information

This issue of the journal is dedicated to the centenary of Prof. K.P. Staniukovich. The paper is prepared within RUDN-University program 5-100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivashchuk, V.D., Melnikov, V.N. Quantum billiards in multidimensional models with fields of forms on a product of Einstein spaces. Gravit. Cosmol. 22, 166–178 (2016). https://doi.org/10.1134/S0202289316020079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289316020079

Keywords

Navigation