Skip to main content
Log in

The effect of universe inhomogeneities on cosmological distance measurements

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Using the focusing equation, the equation for the cosmological angular diameter distance1 is derived, based on the ideas of Academician Zel’dovich, namely, that the distribution of matter at small angles is not homogeneous, and the light cone is close to being empty. We propose some ways of testing a method for measuring the angular diameter distances and show that the proposed method leads to results that agree better with the experimental data than those obtained by the usual methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zeldovich, Sov. Astron. 8, 13 (1964).

    ADS  MathSciNet  Google Scholar 

  2. A. V. Nikolaev and S. V. Chervon, EPJC 75, 75 (2015).

    Article  Google Scholar 

  3. R. K. Sachs, Proc. Roy. Soc. London 264, 309 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  4. G. F. R. Ellis, Gen. Rel. Grav. 39, 1047 (2007).

    Article  ADS  Google Scholar 

  5. E. Poisson, A Relativist’s Toolkit. The Mathematics of Black-Hole Mechanics (Cambridge University, Cambridge, 2004).

    Book  MATH  Google Scholar 

  6. P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses (Springer, Berlin, 1999).

    Google Scholar 

  7. G. Ellis, Gen. Rel. Grav. 41, 581 (2009).

    Article  ADS  Google Scholar 

  8. R. F. L. Holanda, R. S. Goncalves, and J. S. Alcaniz, JCAP 1206, 022 (2012).

    Article  ADS  Google Scholar 

  9. A. V. Nikolaev and S. V. Chervon, Int. J. Mod. Phys. A 31, 1641013 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  10. J.-P. Uzan, N. Aghanim, and Y. Mellier, Phys. Rev. D 70, 083533 (2004).

    Article  ADS  Google Scholar 

  11. M. Sereno, E. Piedipalumbo, and M. V. Sazhin, Mon. Not. Roy. Astron. Soc. 335, 1061 (2002).

    Article  ADS  Google Scholar 

  12. E. D. Reese, J. E. Carlstrom, M. Joy, J. J. Mohr, L. Grego, and W. L. Holzapfel, Astroph. J. 581, 53 (2002).

    Article  ADS  Google Scholar 

  13. S. J. LaRoque, M. Bonamente, J. E. Carlstrom, M. K. Joy, D. Nagai, E. D. Reese, and K. S. Dawson, Astroph. J. 652, 917 (2006).

    Article  ADS  Google Scholar 

  14. S. Ettori, A. Morandi, P. Tozzi, I. Balestra, S. Borgani, P. Rosati, L. Lovisari, and F. Terenziani, Astron. Astroph. 501, 61 (2009).

    Article  ADS  Google Scholar 

  15. S. W. Allen, D. A. Rapetti, R. W. Schmidt, H. Ebeling, R. G. Morris, and A. C. Fabian, Mon. Not. Roy. Astron. Soc. 383, 879 (2008).

    Article  ADS  Google Scholar 

  16. P. Schneider and A. Weiss, Astroph. J. 327, 526 (1988).

    Article  ADS  Google Scholar 

  17. S. Seitz, P. Schneider, and J. Ehlers, Class. Quantum Grav. 11, 2345 (1994).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nikolaev.

Additional information

This issue of the journal is dedicated to the centenary of Prof. K.P. Staniukovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, A.V., Chervon, S.V. The effect of universe inhomogeneities on cosmological distance measurements. Gravit. Cosmol. 22, 208–211 (2016). https://doi.org/10.1134/S0202289316020122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289316020122

Keywords

Navigation