Skip to main content
Log in

Massive Gravity as an Alternative Gravity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The Newtonian gravity force is massless and decreases as \(1/r^{2}\), too steeply to explain the flat rotation curves of spiral galaxies. Massive gravity, on the other hand, drops as \(1/r\) and is capable of doing the job. Massive fields have a respected record in the history of field theories. We follow the suit and add a ‘‘mass term’’ to the field equation of Newtonian gravity, which, to begin with, is static. Next, we use the observation-based Tully-Fisher relation to determine the nature and characteristics of the added mass term. We are able to produce the rotation curves flat enough to justify the observational data up to several optical radii of the galaxies, where observations are both abundant and reliable. At very far distances, however, massive gravity goes through a sequence of intermittently attractive and repulsive phases. This is a welcome novelty. It may enable one to address the wavy fluctuations and patchy voids that are not uncommon in the archives of observed rotation curves. With a stretch of imagination, massive gravity may find an observational support in the Oort clouds, a stipulated spherical shell of debris at farthest outreaches of the Solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. F. Zwicky, Helvetica Physica Acta 6, 110 (1933).

    ADS  Google Scholar 

  2. M. Fierz and W. Pauli, Proc. Roy. Soc. London A (Math. Phys.) 173, 211 (1939).

    Google Scholar 

  3. H. van Dam and M. Veltman, Nucl. Phys. B 22, 397 (1970).

    Article  ADS  Google Scholar 

  4. V. I. Zakharov, JETP Lett. (USSR) (Engl. Transl.) 12, 312 (1970).

  5. A. I. Vainshtein, Phys. Rev. B 39, 393 (1972).

    Google Scholar 

  6. D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368 (1972).

    Article  ADS  Google Scholar 

  7. C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020 (2010).

  8. C. de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev. Lett. 106, 231101 (2011).

  9. S. Hassan and R. A. Rosen, Phys. Rev. Lett. 108, 041101 (2011).

  10. C. de Rham, http://www.phys.cwru.edu/ claudia/, 2015

  11. S. L. Dubovsky, P. G. Tinyakov, and I. I. Tkachev, Phys. Rev. Lett. 94, 181102 (2005); hep-th/0411158.

  12. E. A. Bergshoeff, O. Hohm, and P. K. Townsend, arXiv: 09051215.

  13. E. Babichev, C. Defayet, and R. Ziour, arXiv: 0907.4103.

  14. J. Oliva and S. Ray, arXiv: 1004.0737.

  15. L. Parisi, N. Radicella, and G. Vilasi, arXiv: 1207.3922.

  16. G. de Berredo-Peixoto, gr-qc/020802.

  17. R. B. Tully and J. R. Fisher, Astron. Astroph. 54, 661 (1977).

    ADS  Google Scholar 

  18. M. Milgrom, Astroph. J. 270, 365 (1983).

    Article  ADS  Google Scholar 

  19. R. H. Sanders and S. S. McGough, Ann. Rev. Astron. Astroph. 40, 263 (2002).

    Article  ADS  Google Scholar 

  20. Y. Sobouti, Astroph. J. 464, 921 (2007).

    ADS  Google Scholar 

  21. H. C. Plummer, Mon. Not. R. Astron. Soc. 71, 460 (1911).

    Article  ADS  Google Scholar 

  22. D. R. Clemens, Astroph. J. 295, 422 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sobouti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobouti, Y. Massive Gravity as an Alternative Gravity. Gravit. Cosmol. 26, 1–6 (2020). https://doi.org/10.1134/S0202289320010132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320010132

Navigation