Skip to main content
Log in

The Kerr–Newman Black Hole Solution as Strong Gravity for Elementary Particles

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Analyzing the model of a spinning particle based on the over-rotating Kerr–Newman solution regularized by a supersymmetric bag model, we arrive at the conclusion that a unification of gravity with quantum theory is achieved in this model due to a strong topological influence of the Kerr spinning gravity which occurs on the Compton scale. We obtain that the correct formation of the nonperturbative bag model requires the use of the supersymmetric Landau–Ginzburg field model. We obtain that one of the most important gravitational phenomena in particle physics is the appearance of the quantum Wilson loop caused by the effect of frame-dragging related to the spin. Being located on the sharp border of the bag, the Wilson loop has a strong influence on the circular D-string structure located there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We consider these loops as potentially possible Wilson loops. In many respects, the emergence of this series of closed loops \(C_{n}\) with the quantum phase increment \(2\pi n=\frac{1}{\hbar}\oint j_{\mu}A^{\mu}\) resembles the series of Bohr-Sommerfeld quantum orbits. Note that this is a purely classical effect, which is caused by the frame-dragging field near the border of the regularized KN solution. We see that the Kerr spinning gravity reproduces some elements of quantum theory on the classical level.

  2. This can explain the absence of classical radiation from an excited orientifold string.

  3. In string theory this peculiar point is called the orientifold plane.

REFERENCES

  1. G. ’t Hooft , ‘‘The black hole interpretation of string theory,’’ Nucl. Phys. B 335, 138 (1990).

    ADS  MathSciNet  Google Scholar 

  2. C. Holzhey and F. Wilczek, ‘‘Black holes as elementary particles,’’ Nucl. Phys. B 380, 447 (1992).

    ADS  MathSciNet  MATH  Google Scholar 

  3. L. Susskind, ‘‘Some speculations about black hole entropy in string theory,’’ hep-th/9309145.

  4. B. Carter, ‘‘Global structure of the Kerr family of gravitational fields,’’ Phys. Rev. 174, 1559 (1968).

    ADS  MATH  Google Scholar 

  5. N. Arkani-Hamed, Y-t. Huang, and D. O’Connell, ‘‘Kerr black holes as elementary particles,’’ J. High Energ. Phys. 46 (2020); arXiv: 1906.10100.

  6. B. S. Schmekel, ‘‘Quasi-local energy of a charged rotating object described by the Kerr–Newman metric,’’ Phys. Rev. D 100, 124011 (2019); arXiv: 1811.03551.

  7. K. Becker, M. Becker, and J. Schwarz, String Theory and M-Theory: A Modern Introduction (Cambridge University Press, 2007).

    MATH  Google Scholar 

  8. R. P. Kerr, ‘‘Gravitational field of a spinning mass as an example of algebraically special metrics,’’ Phys. Rev. Lett. 11, 237 (1963).

    ADS  MathSciNet  MATH  Google Scholar 

  9. W. Israel, ‘‘Source of the Kerr metric,’’ Phys. Rev. D 2, 64 (1970).

    ADS  MathSciNet  MATH  Google Scholar 

  10. G. C. Debney, R. P. Kerr, and A. Schild, ‘‘Solutions of the Einstein and Einstein-Maxwell equations,’’ J. Math. Phys. 10, 1842 (1969).

    ADS  MathSciNet  Google Scholar 

  11. V. Hamity, ‘‘An interior of the Kerr metric,’’ Phys. Lett. A 56, 77 (1986).

    ADS  Google Scholar 

  12. A. Ya. Burinskii, ‘‘Microgeons with spin,’’ Sov. Phys. JETP 39, 193 (1974).

    ADS  MathSciNet  Google Scholar 

  13. D. D. Ivanenko and A. Ya. Burinskii, ‘‘Gravitational strings in the models of elementary particles,’’ Izv. Vuz. Fiz. 5, 135 (1975).

    Google Scholar 

  14. C. A. López, ‘‘An extended model of the electron in general relativity,’’ Phys. Rev. D, 313 (1984).

  15. A. Burinskii, ‘‘Regularized Kerr–Newman solution as a gravitating soliton,’’ J. Phys. A: Math. Theor. 43, 392001 (2010); arXiv: 1003.2928.

    MathSciNet  MATH  Google Scholar 

  16. A. Burinskii, ‘‘Gravitating lepton bag model,’’ JETP (Zh. Eksp. Teor. Fiz.) 148, 228 (2015).

  17. J. Tiomno, ‘‘Electromagnetic field of rotating charged bodies,’’ Phys. Rev. D 7, 992 (1973).

    ADS  Google Scholar 

  18. C. A. Lopez, ‘‘Material and electromagnetic sources of the Kerr–Newman geometry,’’ Nuov. Cim. D 76, 9 (1983).

    ADS  MathSciNet  Google Scholar 

  19. I. Dymnikova, ‘‘Spinning superconducting electrovacuum soliton,’’ Phys. Lett. B 639, 368 ((2006).

    ADS  MathSciNet  MATH  Google Scholar 

  20. A. Burinskii, ‘‘Kerr–Newman electron as spinning soliton,’’ Int J. Mod. Phys. A 29, 1450133 (2014); arXiv:1410.2888.

    ADS  MATH  Google Scholar 

  21. A. Burinskii, ‘‘Some properties of the Kerr solution to low-energy string theory,’’. Phys. Rev. D 52, 5826 (1995); hep-th/9504139.

    ADS  MathSciNet  Google Scholar 

  22. A. Burinskii, ‘‘Gravitational strings beyond quantum theory: Electron as a closed heterotic string,’’ J. Phys.: Conf. Ser. 361, 012032 (2012); arXiv:1109.3872.

    Google Scholar 

  23. A. Burinskii, ‘‘Twistorial analyticity and three stringy systems of the Kerr spinning particle,’’ Phys. Rev. D 70, 086006 (2004); hep-th/0406063.

    ADS  MathSciNet  Google Scholar 

  24. M. Gürses and F. Gürsey, ‘‘Lorentz covariant treatment of the Kerr–Schild geometry,’’ J. Math. Phys. 16, 2385 (1975).

    ADS  MathSciNet  Google Scholar 

  25. A. Burinskii, ‘‘The Dirac-Kerr–Newman electron,’’ Grav. Cosmol. 14, 109 (2008); arXiv: 0507109.

  26. A. Burinskii, ‘‘Emergence of the Dirac equation in the solitonic source of the Kerr spinning particle,’’ Grav. Cosmol. 21, 28 (2014); arXiv: 1404.5947.

  27. A. Burinskii, ‘‘Stability of the lepton bag model based on the Kerr–Newman solution,’’ JETP (Zh. Eksp. Teor. Fiz.) 148, 937 (2015).

  28. A. Burinskii, ‘‘Source of the Kerr–Newman solution as a gravitating bag model: 50 years of the problem of the source of the Kerr solution,’’ Int. J. Mod. Phys. A 31, 1641002 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  29. A. Burinskii, ‘‘Source of the Kerr–Newman solution as a supersymmetric domain-wall bubble: 50 years of the problem,’’ Phys. Lett. B 754, 99 (2016).

    ADS  MATH  Google Scholar 

  30. A. Burinskii, ‘‘Supersymmetric bag model for unification of gravity with spinning particles,’’ Phys. Part. Nucl. 49 (5), 958 (2018).

    Google Scholar 

  31. A. Chodos et al., ‘‘New extended model of hadrons,’’ Phys. Rev. D 9, 3471 (1974).

    ADS  MathSciNet  Google Scholar 

  32. W. A. Bardeen at al., ‘‘Heavy quarks and strong binding: A field theory of hadron structure,’’ Phys. Rev. D 11, 1094 (1974).

    ADS  Google Scholar 

  33. H. B. Nielsen and P. Olesen, ‘‘Vortex-line models for dual strings,’’ Nucl. Phys. B 61, 45 (1973).

    ADS  Google Scholar 

  34. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics ( Interscience Publishers, 1965).

    MATH  Google Scholar 

  35. R. C. Giles, ‘‘Semiclassical dynamics of the ‘‘SLAC bag’’, Phys. Rev. D 0, 1670 (1976).

    ADS  Google Scholar 

  36. S.-H. H. Tye, ‘‘Quark-binding string,’’ Phys. Rev. D 3, 3416 (1976).

    ADS  Google Scholar 

  37. R. C. Giles and S.-H. H. Tye, ‘‘Quantum dynamics of a quark-binding bubble in two space and one time dimensions,’’ Phys. Rev. D 13, 1690 (1976).

    ADS  Google Scholar 

  38. V. I. Dokuchaev and Yu. N. Eroshenko, Zh. Exp. Teor. Fiz. 144, 85 (2013); JETP 117, 72 (2013).

    ADS  Google Scholar 

  39. J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton Univ. Press, New Jersey, 1983).

    MATH  Google Scholar 

  40. J. R. Morris, ‘‘Supersymmetry and ggauge invariance constraints in a \(U(1)\times U(1)^{\prime}\)–Higgs superconducting cosmic string model,’’ Phys. Rev. D 53, 2078 (1996); hep-ph/9511293.

    ADS  Google Scholar 

  41. A. Dabholkar et al., ‘‘Strings as solitons and black holes as strings,’’ Nucl. Phys. B 474, 85 (1996); hep-th/9511053.

    ADS  MathSciNet  MATH  Google Scholar 

  42. A. Sen, ‘‘Rotating charged black hole soltion in heterotic string theory,’’ Phys. Rev. Lett. 69, 1006 (1992).

    ADS  MathSciNet  MATH  Google Scholar 

  43. G. Horowitz and A. Steif, ‘‘Spacetime singularities in string theory, Phys. Rev. Lett. 64, 260 (1990).

    ADS  MathSciNet  MATH  Google Scholar 

  44. A. Burinskii, ‘‘Orientifold D-string in the source of the Kerr Spinning Particle,’’ Phys. Rev. D 68, 105004 (2003); arXiv:hep-th/0308096.

    ADS  MathSciNet  Google Scholar 

  45. A. Burinskii, ‘‘Complex Kerr geometry and nonstationary Kerr solutions,’’ Phys. Rev. D 67, 124024 (2003).

    ADS  MathSciNet  Google Scholar 

  46. A. Burinskii, ‘‘Stringlike structures in complex Kerr geometry,’’ in Proceedings of the Fourth Hungarian Relativity Workshop, Gárdony, 12-17 July 1992, Relativity Today, Eds. R.P. Kerr and Z. Perjeŝ (Akadt́miai Kiadó, Budapest, 1994).

  47. A. Burinskii, ‘‘Stringlike structures in Kerr–Schild geometry: The \(N=2\) string, twistors, and the Calaby-Yau twofold,’’ Theor. Math. Phys. 177 (2), 1492–1504 (2013).

    MATH  Google Scholar 

  48. A. Burinskii, ‘‘Stringlike structures in the real and complex Kerr–Schild geometry,’’ J. Phys. Conf. Series 532, 012004 (2014); arXiv: 1410.2462; A. Burinskii, ‘‘Kerr spinning particle, strings, and superparticle models,’’ Phys. Rev. D 57, 2392 (1998).

  49. A. Burinskii, ‘‘Wonderful consequences of the Kerr theorem,’’ Grav. Cosmol. 11, 301 (2005)..

    ADS  MathSciNet  MATH  Google Scholar 

  50. J. Ellis, Where is Particle Physics Going? Int. J. Mod. Phys. A 32, 1746001 (2017).

    ADS  MathSciNet  Google Scholar 

  51. Julian Schwinger, ‘‘Gauge Invariance and Mass. II,’’ Phys. Rev. 128, 2425 (1962).

    ADS  MathSciNet  MATH  Google Scholar 

  52. Tim Adamo and E. T. Newman, ‘‘The Kerr–Newman metric: A review,’’ Scholarpedia 9, 31791 (2014).

    ADS  Google Scholar 

  53. Kjell Rosquist, ‘‘Gravitationally induced electromagnetism at the Compton scale,’’ Class. Quantum Grav. 23, 3111 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  54. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields. Volume 2 of A Course of Theoretical Physics (Pergamon Press 1971).

Download references

ACKNOWLEDGMENTS

I would like to thank M. Gürses, Yu.N. Obukhov and K. Stepaniantz for very kind information about the appearance of the article [5], and also all colleagues of the Theoretical Physics Laboratory of our Institute for useful discussions at different stages of this work. I also thank N. Arkani-Hamed for his kind response to the letter about this problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Burinskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burinskii, A. The Kerr–Newman Black Hole Solution as Strong Gravity for Elementary Particles. Gravit. Cosmol. 26, 87–98 (2020). https://doi.org/10.1134/S020228932002005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228932002005X

Navigation