Skip to main content
Log in

Does the Instruction “Be Original and Create” Actually Affect the EEG Correlates of Performing Creative Tasks?

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The study provides the data related to synchronization/desynchronization when performing verbal creative (to create the endings of proverbs) and noncreative (to find a synonym for the ending of the known proverb; to remember the known ending of the proverb) tasks, as well as the data on classification of EEG patterns during these tasks. Twenty-four volunteers (18–22 y.o., 20 women, 4 men) participated in the study. Creation of original endings vs. memory task was accompanied by the higher values of EEG power in the frontal region of the right hemisphere in the frequency range 8–9 Hz for the time interval of 400–730 ms. In the parietal region of the left hemisphere in the same frequency range, the higher EEG spectral power EEG values were obtained while creating both original and synonymous endings compared to the “recall/memory” control task. When creating original and synonymous endings, the power of EEG was higher in the central frontal regions for the 14–15 Hz frequency band, as well as in the right hemisphere F4 and P4 used for the tasks with synonyms compared to the memory task (850–950 ms). For the frequencies of 17–21 Hz, there were no differences between the creative and synonymous tasks; at the same time, the creative task as compared to the task for memory was characterized by differences in the parietal sites bilaterally and in the central frontal region only for the frequencies of 17–18 Hz, while the synonyms task as compared to the memory one differed in the specified regions for the frequency range of 17–21 Hz. The EEG signal classification was carried out using the classifier learning software package in the matlab environment. The results of classification were considered on the basis of linear discriminant analysis, the support vector machine, and the method that gave the best classification result. An EEG signal converted to current source density (CSD) from frontal (F3, Fz, F4) and parietal regions (P3, Pz, P4) located on the surface of the skull according to the 10–20 System was used for classification. The average accuracy of single trial classification for three types of tasks in all subjects was 48.7 ± 5% [SD] for the best classifier; the best result of the individual subject (58.5%) was achieved using linear discriminant analysis at the theoretical threshold of random classification of 33%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Guilford, J.P., The Nature of Human Intelligence, New York: McGraw-Hill, 1967.

    Google Scholar 

  2. Guilford, J.P., Higher order structure-of-intellect abilities, Multivar. Behav. Res., 1981, vol. 16, no. 4, p. 411.

    Article  CAS  Google Scholar 

  3. Gruzelier, J.H., EEG-neurofeedback for optimising performance. II: creativity, the performing arts and ecological validity, Neurosci. Biobehav. Rev., 2014, vol. 44, p. 142.

    Article  PubMed  Google Scholar 

  4. Fink, A., Benedek, M., Grabner, R.H., et al., Creativity meets neuroscience: experimental tasks for the neuroscientific study of creative thinking, Methods, 2007, vol. 42, no. 1, p. 68.

    Article  CAS  PubMed  Google Scholar 

  5. Arden, R., Chavez, R.S., Grazioplene, R., and Jung, R.E., Neuroimaging creativity: a psychometric view, Behav. Brain Res., 2010, vol. 214, no. 2, p. 143.

    Article  PubMed  Google Scholar 

  6. Dietrich, A. and Kanso, R., A review of EEG, ERP, and neuroimaging studies of creativity and insight, Psychol. Bull., 2010, vol. 136, no. 5, p. 822.

    Article  PubMed  Google Scholar 

  7. Lopata, J.A., Nowicki, E.A., and Joanisse, M.F., Creativity as a distinct trainable mental state: An EEG study of musical improvisation, Neuropsychologia, 2017, vol. 99, p. 246.

    Article  PubMed  Google Scholar 

  8. Shemyakina, N.V. and Nagornova, Zh.V., EEG “signs” of verbal creative task fulfillment with and without overcoming self-Induced stereotypes, Behav. Sci., 2020, vol. 10, no. 1, p. 17.

    Article  Google Scholar 

  9. Razumnikova, O.M., Creativity related cortex activity in the remote associates task, Brain Res. Bull., 2007, vol. 73, nos. 1–3, p. 96.

    Article  PubMed  Google Scholar 

  10. Marron, T.R., Lerner, Y., Berant, E., et al., Chain free association, creativity, and the default mode network, Neuropsychologia, 2018, vol. 118, p. 40.

    Article  PubMed  Google Scholar 

  11. Martindale, C. and Hasenfus, N., EEG differences as a function of creativity, stage of the creative process, and effort to be original, Biol. Psychol., 1978, vol. 6, no. 3, p. 157.

    Article  CAS  PubMed  Google Scholar 

  12. Qiu, J., Li, H., Yang, D., et al., The neural basis of insight problem solving: an event-related potential study, Brain Cognit., 2008, vol. 68, no. 1, p. 100.

    Article  Google Scholar 

  13. Bowden, E.M. and Jung-Beeman, M., Aha! Insight experience correlates with solution activation in the right hemisphere, Psychon. Bull. Rev., 2003, vol. 10, no. 3, p. 730.

    Article  PubMed  Google Scholar 

  14. Tik, M., Sladky, R., Luft, C.D.B., et al., Ultra-high-field fMRI insights on insight: neural correlates of the Aha!-moment, Hum. Brain Mapp., 2018, vol. 39, no. 8, p. 3241.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bindman, L., Lippold, O., and Redfearn, J.W.T., The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects, J. Physiol., 1964, vol. 172, no. 3, p. 369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jaušovec, N. and Jaušovec, K., Increasing working memory capacity with theta transcranial alternating current stimulation (tACS), Biol. Psychol., 2014, vol. 96, p. 42.

    Article  PubMed  Google Scholar 

  17. Ohn, S.H., Park, C.I., Yoo, W.K., et al., Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory, Neuroreport, 2008, vol. 19, no. 1, p. 43.

    Article  PubMed  Google Scholar 

  18. Zaehle, T., Sandmann, P., Thorne, J.D., et al., Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioral and electrophysiological evidence, BMC Neurosci., 2011, vol. 12, no. 2. https://doi.org/10.1186/1471-2202-12-2

  19. Hertenstein, E., Waibel, E., Frase, L., et al., Modulation of creativity by transcranial direct current stimulation, Brain Stimul., 2019, vol. 12, no. 5, p. 1213.

    Article  PubMed  Google Scholar 

  20. Fink, A., Schwab, D., and Papousek, I., Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions, Int. J. Psychophysiol., 2011, vol. 82, no. 3, p. 233.

    Article  PubMed  Google Scholar 

  21. Subramaniam, K., Beeman, M., Faust, M., and Mashal, N., Positively valenced stimuli facilitate creative novel metaphoric processes by enhancing medial prefrontal cortical activation, Front. Psychol., 2013, vol. 4, p. 211.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Subramaniam, K., Kounios, J., Parrish, T.B., and Jung-Beeman, M., A brain mechanism for facilitation of insight by positive affect, J. Cognit. Neurosci., 2009, vol. 21, no. 3, p. 415.

    Article  Google Scholar 

  23. Subramaniam, K. and Vinogradov, S., Improving the neural mechanisms of cognition through the pursuit of happiness, Front. Hum. Neurosci., 2013, vol. 7, p. 452.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shemyakina, N.V. and Dan’ko, S.G., Changes in the power and coherence of the β2 EEG band in subjects performing creative tasks using emotionally significant and emotionally neutral words, Hum. Physiol., 2007, vol. 33, no. 1, p. 20.

    Article  Google Scholar 

  25. Shemyakina, N.V. and Dan’ko, S.G., Influence of the emotional perception of a signal on the electroencephalographic correlates of creative activity, Hum. Physiol., 2004, vol. 30, no. 2, p. 145.

    Article  Google Scholar 

  26. Bechtereva, N.P., The Neurophysiological Aspects of Human Mental Activity, Oxford: Oxford Univ. Press, 1978.

    Google Scholar 

  27. Bekhtereva, N.P., Gogolitsyn, Yu.L., Kropotov, Yu.D., and Medvedev, S.V., Neirofiziologicheskie mekhanizmy myshleniya (Neurophysiological Mechanisms of Thinking), Leningrad: Nauka, 1985.

  28. Bekhtereva, N.P., Zdorovyi i bol’noi mozg cheloveka (Healthy and Injured Human Brain), Leningrad: Nauka, 1988, 2nd ed.

  29. Shemyakina, N.V., Danko, S.G., Nagornova, Zh.V., et al., Changes in the power and coherence spectra of the EEG rhythmic components during solution of a verbal creative task of overcoming a stereotype, Hum. Physiol., 2007, vol. 33, no. 5, p. 524.

    Article  Google Scholar 

  30. Danko, S.G., Shemyakina, N.V., Nagornova, Zh.V., and Starchenko, M.G., Comparison of the effects of the subjective complexity and verbal creativity on EEG spectral power parameters, Hum. Physiol., 2009, vol. 35, no. 3, p. 381.

    Article  Google Scholar 

  31. Bechtereva, N.P., Korotkov, A.D., Pakhomov, S.V., et al., PET study of brain maintenance of verbal creative activity, Int. J. Psychophysiol., 2004, vol. 53, no. 1, p. 11.

    Article  CAS  PubMed  Google Scholar 

  32. Razumnikova, O.M. and Bryzgalov, A.O., Frequency-spatial organization of brain electrical activity in creative verbal thought: the role of the gender factor, Neurosci. Behav. Physiol., 2006, vol. 36, no. 6, p. 645.

    Article  CAS  PubMed  Google Scholar 

  33. Bechtereva, N.P., Shemyakina, N.V., Starchenko, M.G., et al., Error detection mechanisms of the brain: background and prospects, Int. J. Psychophysiol., 2005, vol. 58, nos. 2–3, p. 227.

    Article  CAS  PubMed  Google Scholar 

  34. Jung-Beeman, M., Bowden, E.M., Haberman, J., et al., Neural activity when people solve verbal problems with insight, PLoS Biol., 2004, vol. 2, no. 4, p. 500.

    Article  CAS  Google Scholar 

  35. Howard-Jones, P.A., Blakemore, S.J., Samuel, E.A., et al., Semantic divergence and creative story generation: an fMRI investigation, Brain Res. Cognit., 2005, vol. 25, no. 1, p. 240.

    Article  Google Scholar 

  36. Beaty, R.E., The neuroscience of musical improvisation, Neurosci. Biobehav. Rev., 2015, vol. 51, p. 108.

    Article  PubMed  Google Scholar 

  37. Pfurtsheller, G. and Aranibar, A., Event-related cortical desynchronization detected by power measurement of scalp EEG, Electroencephalogr. Clin. Neurophysiol., 1977, vol. 42, no. 6, p. 817.

    Article  Google Scholar 

  38. Kiebel, S., Tallon-Baudry, C., and Friston, K.J., Parametric analysis of oscillatory activity as measured with EEG/MEG, Hum. Brain Mapp., 2005, vol. 26, no. 3, p. 170.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wolpaw, J.R. and Wolpaw, E.W., Brain-Computer Interfaces: Principles and Practice, Oxford: Oxford Univ. Press, 2012.

    Book  Google Scholar 

  40. Sonkin, K.M., Stankevich, L.A., Khomenko, J.G., et al., Development of electroencephalographic pattern classifiers for real and imaginary thumb and index finger movements of one hand, Artif. Intell. Med., 2015, vol. 63, no. 2, p. 107.

    Article  PubMed  Google Scholar 

  41. Stankevich, L.A., Sonkin, K.M., Shemyakina, N.V., et al., EEG pattern decoding of rhythmic individual finger imaginary movements of one hand, Hum. Physiol., 2016, vol. 42, no. 1, p. 32.

    Article  Google Scholar 

  42. Frolov, A.A. and Bobrov, P.D., Brain–computer interfaces: neurophysiological bases and clinical applications, Neurosci. Behav. Physiol., 2018, vol. 48, no. 9, p. 1033.

    Article  Google Scholar 

  43. Kwon, J., Shin, J., and Im, C.H., Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels, PLoS One, 2020, vol. 15, no. 3, p. e0230491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Craik, A., He, Y., and Contreras-Vidal, J.L., Deep learning for electroencephalogram (EEG) classification tasks, J. Neural Eng., 2019, vol. 16, no. 3, art. ID 031001.

    Article  PubMed  Google Scholar 

  45. Craik, A., He, Y., and Contreras-Vidal, J.L., Deep learning for electroencephalogram (EEG) classification tasks: a review, J. Neural Eng., 2019, vol. 16, no. 3, p. 031001.

    Article  PubMed  Google Scholar 

  46. Sasaki, M., Iversen, J., and Callan, D.E., Music improvisation is characterized by increase EEG spectral power in prefrontal and perceptual motor cortical sources and can be reliably classified from non-improvisatory performance, Front. Hum. Neurosci., 2019, vol. 13, p. 435.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Petersen, T.H. and Puthusserypady, S., Assessing tDCS placebo effects on EEG and cognitive tasks, Proc. 41st Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, 2019, p. 4509.

  48. Kozhushko, N.J., Nagornova, Zh.V., Evdokimov, S.A., et al., Specificity of spontaneous EEG associated with different levels of cognitive and communicative dysfunctions in children, Int. J. Psychophysiol., 2018, vol. 128, p. 22.

    Article  PubMed  Google Scholar 

  49. Jung, T.P., Makeig, S., Humphries, C., et al., Removing electroencephalographic artifacts by blind source separation, Psychophysiology, 2000, vol. 37, no. 2, p. 163.

    Article  CAS  PubMed  Google Scholar 

  50. Tereshchenko, E.P., Ponomarev, V.A., Kropotov, Y.D., and Müller, A., Comparative efficiencies of different methods for removing blink artifacts in analyzing quantitative electroencephalogram and event-related potentials, Hum. Physiol., 2009, vol. 35, no. 2, p. 241.

    Article  Google Scholar 

  51. Perrin, F., Pernier, J., Bertrand, O., and Echallier, J.F., Spherical splines for scalp potential and current density mapping, Electroencephalogr. Clin. Neurophysiol., 1989, vol. 72, no. 2, p. 184.

    Article  CAS  PubMed  Google Scholar 

  52. Tenke, C.E. and Kayser, J., Generator localization by current source density (CSD): implications of volume conduction and field closure at intracranial and scalp resolutions, Clin. Neurophysiol., 2012, vol. 123, no. 12, p. 2328.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kayser, J. and Tenke, C., Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: a tutorial review, Int. J. Psychophysiol., 2015, vol. 97, no. 3, p. 189.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ponomarev, V.A., Mueller, A., Candrian, G., et al., Group independent component analysis (gICA) and current source density (CSD) in the study of EEG in ADHD adults, Clin. Neurophysiol., 2014, vol. 125, no. 1, p. 83.

    Article  PubMed  Google Scholar 

  55. Tallon-Baudry, C. and Bertrand, O., Oscillatory gamma activity in humans and its role in object representation, Trends Cognit. Sci., 1999, vol. 3, no. 4, p. 151.

    Article  CAS  Google Scholar 

  56. Deecke, L., Grözinger, B., and Kornhuber, H.H., Voluntary finger movement in man: cerebral potentials and theory, Biol. Cybern., 1976, vol. 23, no. 2, p. 99.

    Article  CAS  PubMed  Google Scholar 

  57. Libet, B., Gleason, C.A., Wright, E.W., and Pearl, D.K., Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act, Brain, 1983, vol. 106, p. 623.

    Article  PubMed  Google Scholar 

  58. Huynh, H. and Feldt, L.S., Estimation of the Box correction for degrees of freedom from sample data in randomized block and split-plot designs, J. Educ. Stat., 1976, vol. 1, p. 69.

    Article  Google Scholar 

  59. Cortes, C. and Vapnik, V.N., Support-vector networks, Mach. Learn., 1995, vol. 20, no. 3, p. 273.

    Google Scholar 

  60. Son’kin, K.M., Stankevich, L.A., Khomenko, Yu.G., et al., Classification of electroencephalographic patterns of imagined and real movements by one hand fingers using the support of vectors method, Tikhookean. Med. Zh., 2014, no. 2, p. 30.

  61. Shawe-Taylor, J. and Cristianini, N., Kernel Methods for Pattern Analysis, Cambridge: Cambridge Univ. Press, 2004.

    Book  Google Scholar 

  62. Kutas, M. and Hillyard, S.A., Brain potentials during reading reflect word expectancy and semantic association, Nature, 1984, vol. 307, no. 5947, p. 161.

    Article  CAS  PubMed  Google Scholar 

  63. Cermolacce, M., Scannella, S., Faugère, M., et al., “All that glitters is not … alone”. Congruity effects in highly and less predictable sentence contexts, Neurophysiol. Clin., 2014, vol. 44, no. 2, p. 189.

    Article  CAS  PubMed  Google Scholar 

  64. Hanslmayr, S., Leipold, P., Pastötter, B., and Bäuml, K.H., Anticipatory signatures of voluntary memory suppression, J. Neurosci., 2009, vol. 29, no. 9, p. 2742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Depue, B.E., Curran, T., and Banich, M.T., Prefrontal regions orchestrate suppression of emotional memories via a two-phase process, Science, 2007, vol. 317, no. 5835, p. 215.

    Article  CAS  PubMed  Google Scholar 

  66. Sonkin, K.M., Stankevich, L.A., Khomenko, Ju.G., et al., Neurological classifier committee based on artificial neural networks and support vector machine for single-trial EEG signal decoding, Proc. 13th Int. Symp. on Neural Networks, ISNN 2016, St. Petersburg, Russia, July 6–8, 2016, New York: Springer-Verlag, 2016, p. 100.

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-015-00412a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Shemyakina or Zh. V. Nagornova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee of the Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (St. Petersburg) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shemyakina, N.V., Nagornova, Z.V. Does the Instruction “Be Original and Create” Actually Affect the EEG Correlates of Performing Creative Tasks?. Hum Physiol 46, 587–596 (2020). https://doi.org/10.1134/S0362119720060092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720060092

Keywords:

Navigation