Skip to main content
Log in

Neurophysiological Characteristics of Competition in Skills and Cooperation in Creativity Task Performance: A Review of Hyperscanning Research

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review considers the studies of neurophysiological indices of human brain activity in different types of joint actions. The results of studies were summarized to describe the neurophysiological correlates of joint performance of creative or artistic (musical) tasks by several subjects simultaneously in conditions of cooperation or competition. Involvement in joint activities presumably causes the neurophysiological rearrangements of human brain activity that are not observed during tasks performed individually, but characterize the situations of interactions between subjects. The nature of interactions (competition or cooperation) essentially affects brain activity. Interbrain synchronization has been found to increase during cooperation and decrease in conditions that do not require interactions. In performing arts (music improvisation), the performers’ coordinated activity, which can be considered as cooperation, evokes a dynamic interbrain synchronization pattern in frontal and central cortical areas mainly in low-frequency (Δ and θ) EEG bands. Functional near-infrared spectroscopy (fNIRS) has shown that cooperation in performing creativity tasks is characterized by an increase of inter-subject synchronization of the prefrontal, temporal, and temporal-parietal areas of the left and right hemispheres, while no inter-subject synchronization has been observed in competitive contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Montague, P.R., Berns, G.S., Cohen, J.D., et al., Hyperscanning: simultaneous fMRI during linked social interactions, NeuroImage, 2002, vol. 16, no. 4, p. 1159.

    Article  PubMed  Google Scholar 

  2. Kasai, K., Fukuda, M., Yahata, N., et al., The future of real-world neuroscience: imaging techniques to assess active brains in social environments, Neurosci Res., 2015, vol. 90, p. 65.

    Article  PubMed  Google Scholar 

  3. Dumas, G., Towards a two-body neuroscience, Commun. Integr. Biol., 2011, vol. 4, no. 3, p. 349.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sänger, J., Lindenberger, U., and Müller, V., Interactive brains, social minds, Commun. Integr. Biol., 2011, vol. 4, no. 6, p. 655.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Di Paolo, E. and De Jaegher, H., The interactive brain hypothesis, Front. Hum. Neurosci., 2012, vol. 6, p. 163.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Konvalinka, I. and Roepstorff, A., The two-brain approach: how can mutually interacting brains teach us something about social interaction? Front. Hum. Neurosci., 2012, vol. 6, p. 215.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schoot, L., Hagoort, P., and Segaert, K., What can we learn from a two-brain approach to verbal interaction? Neurosci. Biobehav. Rev., 2016, vol. 68, p. 454.

    Article  PubMed  Google Scholar 

  8. de Bruin, L., van Elk, M., and Newen, A., Reconceptualizing second-person interaction, Front. Hum. Neurosci., 2012, vol. 6, p. 151.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Przyrembel, M., Smallwood, J., Pauen, M., and Singer, T., Illuminating the dark matter of social neuroscience: considering the problem of social interaction from philosophical, psychological, and neuroscientific perspectives, Front. Hum. Neurosci., 2012, vol. 6, p. 190.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stephens, G.J., Silbert, L.J., and Hasson, U., Speaker-listener neural coupling underlies successful communication, Proc. Natl. Acad. Sci U.S.A., 2010, vol. 107, no. 32, p. 14425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Babiloni, F. and Astolfi, L., Social neuroscience and hyperscanning techniques: past, present and future, Neurosci. Biobehav. Rev., 2014, vol. 44, p. 76.

    Article  PubMed  Google Scholar 

  12. Acquadro, M.A., Congedo, M., and De Riddeer, D., Music performance as an experimental approach to hyperscanning studies, Front. Hum. Neurosci., 2016, vol. 10, p. 242.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Balconi, M. and Vanutelli, M.E., Cooperation and competition with hyperscanning methods: review and future application to emotion domain, Front. Comput. Neurosci., 2017, vol. 11, p. 86.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pfeiffer, U.J., Vogeley, K., and Schilbach, L., From gaze cueing to dual eye-tracking: novel approaches to investigate the neural correlates of gaze in social interaction, Neurosci. Biobehav. Rev., 2013, vol. 37, no. 10, p. 2516.

    Article  PubMed  Google Scholar 

  15. Macdonald, R.G. and Tatler, B.W., Gaze in a real-world social interaction: a dual eye-tracking study, Q. J. Exp. Psychol., 2018, vol. 71, no. 10, p. 2162.

    Article  Google Scholar 

  16. Rogers, S.L., Speelman, C.P., Guidetti, O., and Longmuir, M., Using dual eye tracking to uncover personal gaze patterns during social interaction, Sci. Rep., 2018, vol. 8, no. 1, p. 4271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Czeszumski, A., Eustergerling, S., Lang, A., et al., Hyperscanning: a valid method to study neural inter brain underpinnings of social interaction, Front. Hum. Neurosci., 2020, vol. 14, p. 39.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Redcay, E., Dodell-Feder, D., and Pearrow, M., Live face-to-face interactionduring fMRI: a new tool for social cognitive neuroscience, NeuroImage, 2010, vol. 50, p. 1639.

    Article  PubMed  Google Scholar 

  19. Astolfi, L., Toppi, J., De Vico Fallani, F., et al., Neuroelectrical hyperscanning measures simultaneous brain activity in humans, Brain Topogr., 2010, vol. 23, no. 3, p. 243.

    Article  PubMed  Google Scholar 

  20. Wang, M.Y., Luan, P., Zhang, J., et al., Concurrent mapping of brain activation from multiple subjects during social interaction by hyperscanning: a mini-review, Quant. Imaging Med. Surg., 2018, vol. 8, no. 8, p. 819.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dumas, G., Nadel, J., Soussignan, R. et al., Inter-brain synchronization during social interaction, PLoS One, 2010, vol. 5, no. 8, p. e12166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yun, K., Watanabe, K., and Shimojo, S., Interpersonal body and neural synchronization as a marker of implicit social interaction, Sci. Rep., 2012, vol. 2, p. 959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Konvalinka, I., Bauer, M., Stahlhut, C., et al., Frontal alpha oscillations distinguish leaders from followers: multivariate decoding of mutually interacting brains, NeuroImage, 2014, vol. 94, p. 79.

    Article  PubMed  Google Scholar 

  24. Cheng, X., Pan, Y., Hu, Y., and Hu, Y., Coordination elicits synchronous brain activity between co-actors: frequency ratio matters, Front. Neurosci., 2019, vol. 13, p. 1071.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen, Y., Zhao, Y., Song, H., Guan, L., and Wu, X., The neural basis of intergroup threat effect on social attention, Sci. Rep., 2017, vol. 7, p. 41062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krueger, F., McCabe, K., Moll, J., et al., Neural correlates of trust, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 50, p., 20084.

  27. Shaw, D.J., Czekóová, K., Staněk, R., et al., A dual-fMRI investigation of the iterated Ultimatum Game reveals that reciprocal behavior is associated with neural alignment, Sci. Rep., 2018, vol. 8, no. 1, p. 10896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Toppi, J., Borghini, G., Petti, M., et al., Investigating cooperative behavior in ecological settings: an EEG hyperscanning study, PLoS One, 2016, vol. 11, no. 4, p. e0154236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Stolk, A., Noordzij, M.L., Verhagen, L., et al., Cerebral coherence between communicators marks the emergence of meaning, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 51, p. 18183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dikker, S., Wan, L., Davidesco, I., et al., Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom, Curr. Biol., 2017, vol. 27, no. 9, p. 1375.

    Article  CAS  PubMed  Google Scholar 

  31. Spiegelhalder, K., Ohlendorf, S., Regen, W., et al., Interindividual synchronization of brain activity during live verbal communication, Behav. Brain Res., 2014, vol. 258, p. 75.

    Article  PubMed  Google Scholar 

  32. Astolfi, L., Toppi, J., Borghini, G., et al., Cortical activity and functional hyperconnectivity by simultaneous EEG recordings from interacting couples of professional pilots, Proc. 34th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Piscataway, NJ: Inst. Electr. Electron. Eng., 2012, vol. 2012, p. 4752.

  33. Szymanski, C., Pesquita, A., Brennan, A.A., et al., Teams on the same wavelength perform better: Inter-brain phase synchronization constitutes a neural substrate for social facilitation, NeuroImage, 2017, vol. 152, p. 425.

    Article  PubMed  Google Scholar 

  34. Tang, H., Mai, X., Wang, S., et al., Interpersonal brain synchronization in the right temporo-parietal junction during face-to-face economic exchange, Soc. Cognit. Affect. Neurosci., 2016, vol. 11, no. 1, p. 23.

    Article  Google Scholar 

  35. Zhang, M., Ding, K., Jia, H., and Yu, D., Brain-to-brain synchronization of the expectation of cooperation behavior: a fNIRS hyperscanning study, Proc. 40th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Piscataway, NJ: Inst. Electr. Electron. Eng., 2018, vol. 2018, p. 546.

  36. Müller, V., Sänger, J., and Lindenberger, U., Intra- and inter-brain synchronization during musical improvisation on the guitar, PLoS One, 2013, vol. 8, no. 9, p. e73852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lu, K., Xue, H., Nozawa, T., and Hao, N., Cooperation makes a group be more creative, Cereb. Cortex, 2019, vol. 29, no. 8, p. 3457.

    Article  PubMed  Google Scholar 

  38. Mayseless, N., Hawthorne, G., and Reiss, A.L., Real-life creative problem solving in teams: fNIRS based hyperscanning study, NeuroImage, 2019, vol. 203, p. 116161.

    Article  PubMed  Google Scholar 

  39. Bekhtereva, N.P., Magiya tvorchestva i psikhofiziologiya. Fakry, soobrazheniya, gipotezy (The Magic of Creativity and Psychophysiology: Considerations, Thoughts, Hypotheses), St. Petersburg: Sova, 2006.

  40. Shemyakina, N.V., Danko, S.G., Nagornova, Zh.V., et al., Changes in the power and coherence spectra of the EEG rhythmic components during solution of a verbal creative task of overcoming a stereotype, Hum. Physiol., 2007, vol. 33, no. 5, p. 524.

    Article  Google Scholar 

  41. Runco, M.A. and Jaeger, G.J., The standard definition of creativity, Creativity Res. J., 2012, vol. 24, no. 1, p. 92.

    Article  Google Scholar 

  42. Lindenberger, U., Li, S.C., Gruber, W., and Müller, V., Brains swinging in concert: cortical phase synchronization while playing guitar, BMC Neurosci., 2009, vol. 10, p. 22.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Babiloni, C., Vecchio, F., Infarinato, F., et al., Simultaneous recording of electroencephalographic data in musicians playing in ensemble, Cortex, 2011, vol. 47, no. 9, p. 1082.

    Article  PubMed  Google Scholar 

  44. Sänger, J., Müller, V., and Lindenberger, U., Intra- and interbrain synchronization and network properties when playing guitar in duets, Front. Hum. Neurosci., 2012, vol. 6, p. 312.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sänger, J., Müller, V., and Lindenberger, U., Directionality in hyperbrain networks discriminates between leaders and followers in guitar duets, Front. Hum. Neurosci., 2013, vol. 7, p. 234.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wan, X., Crüts, B., and Jensen, H.J., The causal inference of cortical neural networks during music improvisations, PLoS One, 2014, vol. 9, no. 12, p. e112776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Müller, V., Sänger, J., and Lindenberger, U., Hyperbrain network properties of guitarists playing in quartet, Ann. N. Y. Acad. Sci., 2018, vol. 1423, p. 198.

    Article  Google Scholar 

  48. Müller, V. and Lindenberger, U., Dynamic orchestration of brains and instruments during free guitar improvisation, Front. Integr. Neurosci., 2019, vol. 13, p. 50.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Washburn, A., Román, I., Huberth, M., et al., Musical role asymmetries in piano duet performance influence alpha-band neural oscillation and behavioral synchronization, Front. Neurosci., 2019, vol. 13, p. 1088.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vanzella, P., Balardin, J.B., Furucho, R.A., et al., fNIRS responses in professional violinists while playing duets: evidence for distinct leader and follower roles at the brain level, Front. Psychol., 2019, vol. 10, p. 164.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Osaka, N., Minamoto, T., Yaoi, K., et al., How two brains make one synchronized mind in the inferior frontal cortex: FNIRS-based hyperscanning during cooperative singing, Front. Psychol., 2015, vol. 6, p. 1811.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fink, A., Koschutnig, K., Benedek, M., et al., Stimulating creativity via the exposure to other people’s ideas, Hum. Brain Mapp., 2012, vol. 33, no. 11, p. 2603.

    Article  PubMed  Google Scholar 

  53. Xue, H., Lu, K., and Hao, N., Cooperation makes two less-creative individuals turn into a highly-creative pair, NeuroImage, 2018, vol. 172, p. 527.

    Article  PubMed  Google Scholar 

  54. Hu, Y., Pan, Y., Shi, X., et al., Inter-brain synchrony and cooperation context in interactive decision making, Biol. Psychol., 2018, vol. 133, p. 54.

    Article  PubMed  Google Scholar 

  55. De Vico Fallani, F., Nicosia, V., Sinatra, R., et al., Defecting or not defecting: how to “read” human behavior during cooperative games by EEG measurements, PLoS One, 2010, vol. 5, no. 12, p. e14187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Astolfi, L., Toppi, J., Borghini, G., et al., Study of the functional hyperconnectivity between couples of pilots during flight simulation: an EEG hyperscanning study, Proc. 33rd Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Piscataway, NJ: Inst. Electr. Electron. Eng., 2011, vol. 2011, p. 2338.

  57. Apps, M.A., Lockwood, P.L., and Balsters, J.H., The role of the midcingulate cortex in monitoring others’ decisions, Front. Neurosci., 2013, vol. 7, p. 251.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Molenberghs, P., Cunnington, R., and Mattingley, J.B., Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies, Neurosci. Biobehav. Rev., 2012, vol. 36, no. 1, p. 341.

    Article  PubMed  Google Scholar 

  59. Molenberghs, P., Hayward, L., Mattingley, J.B., and Cunnington, R., Activation patterns during action observation are modulated by context in mirror system areas, NeuroImage, 2012, vol. 59, no. 1, p. 608.

    Article  PubMed  Google Scholar 

  60. Iacoboni, M. and Dapretto, M., The mirror neuron system and the consequences of its dysfunction, Nat. Rev. Neurosci., 2006, vol. 7, no. 12, p. 942.

    Article  CAS  PubMed  Google Scholar 

  61. Sanfey, A.G., Social decision-making: insights from game theory and neuroscience, Science, 2007, vol. 318, p. 598.

    Article  CAS  PubMed  Google Scholar 

  62. Jiang, J., Chen, C., Dai, B., et al., Leader emergence through interpersonal neural synchronization, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 14, p. 4274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dai, B., Chen, C., Long, Y., et al., Neural mechanisms for selectively tuning into the target speaker in a naturalistic noisy situation, Nat. Commun., 2018, vol. 9, no. 1, p. 2405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Schirmer, A., Meck, W.H., and Penney, T.B., The socio-temporal brain: connecting people in time, Trends Cognit. Sci., 2016, vol. 20, no. 10, p. 760.

    Article  Google Scholar 

  65. Christov-Moore, L., Simpson, E.A., Coudé, G., et al., Empathy: gender effects in brain and behavior, Neurosci. Biobehav. Rev., 2014, vol. 46, no. 4, p. 604.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kinreich, S., Djalovski, A., Kraus, L., et al., Brain-to-brain synchrony during naturalistic social interactions, Sci. Rep., 2017, vol. 7, no. 1, p. 17060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Babiloni, C., Buffo, P., Vecchio, F., et al., Brains “in concert”: frontal oscillatory alpha rhythms and empathy in professional musicians, NeuroImage, 2012, vol. 60, no. 1, p. 105.

    Article  PubMed  Google Scholar 

  68. Sasaki, M., Iversen, J., and Callan, D.E., Music improvisation is characterized by increase EEG spectral power in prefrontal and perceptual motor cortical sources and can be reliably classified from non-improvisatory performance, Front. Hum. Neurosci., 2019, vol. 13, p. 435.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dikaya, L.A. and Skirtach, I.A., Neurophysiological correlates of musical creativity: The example of improvisation, Psychol. Russ: State of the Art, 2015, vol. 8, no. 3, p. 84.

    Google Scholar 

  70. Beaty, R.E., The neuroscience of musical improvisation, Neurosci. Biobehav. Rev., 2015, vol. 51, p. 108.

    Article  PubMed  Google Scholar 

  71. Donnay, G.F., Rankin, S.K., Lopez-Gonzalez, M., et al., Neural substrates of interactive musical improvisation: an FMRI study of 'trading fours' in jazz, PLoS One, 2014, vol. 9, no. 2, p. e88665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Grewe, O., Kopiez, R., and Altenmüller, E., Chills as an indicator of individual emotional peaks, Ann. N.Y. Acad. Sci., 2009, vol. 1169, p. 351.

    Article  PubMed  Google Scholar 

  73. Naeem, M., Prasad, G., Watson, D.R., and Kelso, J.A., Electrophysiological signatures of intentional social coordination in the 10–12 Hz range, NeuroImage, 2012, vol. 59, no. 2, p. 1795.

    Article  PubMed  Google Scholar 

  74. Lu, K., Qiao, X., and Hao, N., Praising or keeping silent on partner’s ideas: Leading brainstorming in particular ways, Neuropsychologia, 2019, vol. 124, p. 19.

    Article  PubMed  Google Scholar 

  75. Lu, K., Teng, J., and Hao, N., Gender of partner affects the interaction pattern during group creative idea generation, Exp. Brain Res., 2020, vol. 238, no. 5, p. 1157.

    Article  PubMed  Google Scholar 

  76. Lu, K., Yu, T., and Hao, N., Creating while taking turns, the choice to unlocking group creative potential, NeuroImage, 2020, vol. 219, p. 117025.

    Article  PubMed  Google Scholar 

  77. Beaty, R.E., Benedek, M., Silvia, P.J., and Schacter, D.L., Creative cognition and brain network dynamics, Trends Cognit. Sci., 2016, vol. 20, no. 2, p. 87.

    Article  Google Scholar 

  78. Razumnikova, O.M. and Nikolaeva, E.I., Inhibitory brain functions and age-associated specificities in organization of cognitive activity, Usp. Fiziol. Nauk, 2019, vol. 50, no. 1, p. 75.

    Google Scholar 

  79. Mayseless, N., Eran, A., and Shamay-Tsoory, S.G., Generating original ideas: the neural underpinning of originality, NeuroImage, 2015, vol. 116, p. 232.

    Article  PubMed  Google Scholar 

  80. Subramaniam, K., Beeman, M., Faust, M., and Mashal, N., Positively valenced stimuli facilitate creative novel metaphoric processes by enhancing medial prefrontal cortical activation, Front. Psychol., 2013, vol. 4, p. 211.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tachibana, A., Noah, J.A., Ono, Y., et al., Prefrontal activation related to spontaneous creativity with rock music improvisation: a functional near-infrared spectroscopy study, Sci. Rep., 2019, vol. 9, no. 1, p. 16044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Shamay-Tsoory, S.G., Adler, N., Aharon-Peretz, J., et al., The origins of originality: the neural bases of creative thinking and originality, Neuropsychologia, 2011, vol. 49, no. 2, p. 178.

    Article  CAS  PubMed  Google Scholar 

  83. Shemyakina, N.V. and Dan’ko, S.G., Changes in the power and coherence of the beta2 EEG band in subjects performing creative tasks using emotionally significant and emotionally neutral words, Hum. Physiol., 2007, vol. 33, no. 1, p. 20.

    Article  Google Scholar 

  84. Wu, X., Yang, W., Tong, D., et al., A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation, Hum. Brain Mapp., 2015, vol. 36, no. 7, p. 2703.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shemyakina, N.V. and Nagornova, Zh.V., Event-related changes in EEG spectral power corresponding to creative and trivial decisions, Russ. J. Physiol., 2020. 106, no. 7, p. 880.

    Google Scholar 

  86. Jiang, J., Dai, B., Peng, D., et al., Neural synchronization during face-to-face communication, J. Neurosci., 2012, vol. 32, no. 45, p. 16064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arden, R., Chavez, R.S., Grazioplene, R., and Jung, R.E., Neuroimaging creativity: a psychometric view, Behav. Brain Res., 2010, vol. 214, no. 2, p. 143.

    Article  PubMed  Google Scholar 

  88. Dietrich, A. and Kanso, R., A review of EEG, ERP, and neuroimaging studies of creativity and insight, Psychol. Bull., 2010, vol. 136, no. 5, p. 822.

    Article  PubMed  Google Scholar 

  89. Benedek, M., Christensen, A.P., Fink, A., and Beaty, R.E., Creativity assessment in neuroscience research, Psychol. Aesthetics, Creativity, Arts, 2019, vol. 13, no. 2, p. 218.

    Article  Google Scholar 

  90. Razumnikova, O.M., Creativity related cortex activity in the remote associates task, Brain Res. Bull., 2007, vol. 73, nos. 1–3, p. 96.

    Article  PubMed  Google Scholar 

  91. Bechtereva, N.P., Korotkov, A.D., Pakhomov, S.V., et al., PET study of brain maintenance of verbal creative activity, Int. J. Psychophysiol., 2004, vol. 53, no. 1, p. 11.

    Article  CAS  PubMed  Google Scholar 

  92. Shemyakina, N.V. and Nagornova, Zh.V., EEG “signs” of verbal creative task fulfillment with and without overcoming self-induced stereotypes, Behav. Sci. (Basel), 2019, vol. 10, no. 1, p. 17.

    Article  Google Scholar 

  93. Jung-Beeman, M., Bowden, E.M., Haberman, J., et al., Neural activity when people solve verbal problems with insight, PLoS Biol., 2004, vol. 2, no. 4, p. E97.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Qiu, J., Li, H., Yang, D., et al., The neural basis of insight problem solving: An event-related potential study, Brain Cognit., 2008, vol. 68, no. 1, p. 100.

    Article  Google Scholar 

  95. Shemyakina, N.V. and Dan’ko, S.G., Influence of the emotional perception of a signal on the electroencephalographic correlates of creative activity, Hum. Physiol., 2004, no. 2, vol. 30, p. 145.

    Article  Google Scholar 

  96. Fink, A. and Benedek, M., EEG alpha power and creative ideation, Neurosci. Biobehav. Rev., 2014, vol. 44, no. 100, p. 111.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rominger, C., Papousek, I., Perchtold, C.M., et al., Creativity is associated with a characteristic U-shaped function of alpha power changes accompanied by an early increase in functional coupling, Cognit. Affect Behav. Neurosci., 2019, vol. 19, no. 4, p. 1012.

    Article  Google Scholar 

  98. Jausovec, N. and Jausovec, K., Differences in resting EEG related to ability, Brain Topogr., 2000, vol. 12, no. 3, p. 229.

    Article  CAS  PubMed  Google Scholar 

  99. Razumnikova, O.M., Volf, N.V., and Tarasova, I.V., Strategy and results: sex differences in electrographic correlates of verbal and figural creativity, Hum. Physiol., 2009, vol. 35, no. 3, p. 285.

    Article  Google Scholar 

  100. Jauk, E., Neubauer, A.C., Dunst, B., Fink, A., and Benedek, M., Gray matter correlates of creative potential: a latent variable voxel-based morphometry study, NeuroImage, 2015, vol. 111, p. 312.

    Article  PubMed  Google Scholar 

  101. Bekhtereva, N.P., Starchenko, M.G., Klyucharev, V.A., et al., Study of the brain organization of creativity: II. Positron-emission tomography data, Hum. Physiol., 2000, vol. 26, no. 5, p. 516.

    Article  Google Scholar 

  102. Danko, S.G., Starchenko, M.G., and Bechtereva, N.P., EEG local and spatial synchronization during a test on the insight strategy of solving creative verbal tasks, Hum. Physiol., 2003, vol. 29, no. 4, p. 502.

    Article  Google Scholar 

  103. Petsche, H., Approaches to verbal, visual and musical creativity by EEG coherence analysis, Int. J. Psychophysiol., 1996, vol. 24, nos. 1–2, p. 145.

    Article  CAS  PubMed  Google Scholar 

  104. Petsche, H., Kaplan, S., von Stein, A., and Filz, O., The possible meaning of the upper and lower alpha frequency ranges for cognitive and creative tasks, Int. J. Psychophysiol., 1997, vol. 26, nos. 1–3, p. 77.

    Article  CAS  PubMed  Google Scholar 

  105. Nagornova, Zh.V. and Shemyakina, N.V., Differences of activations in visual and associative zones during figurative and verbal activity, Ross. Fiziol. Zh. im. I.M. Sechenova, 2014, vol. 100, no. 4, p. 418.

    PubMed  Google Scholar 

  106. Danko, S.G., Shemyakina, N.V., Nagornova, Z.V., and Starchenko, M.G., Comparison of the effects of the subjective complexity and verbal creativity on EEG spectral power parameters, Hum. Physiol., 2009, vol. 35, no. 3, p. 381.

    Article  Google Scholar 

  107. Decety, J. and Lamm, C., The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition, Neuroscientist, 2007, vol. 13, no. 6, p. 580.

    Article  PubMed  Google Scholar 

  108. Decety, J., Jackson, P.L., Sommerville, J.A., et al., The neural bases of cooperation and competition: an fMRI investigation, NeuroImage, 2004, vol. 23, no. 2, p. 744.

    Article  PubMed  Google Scholar 

  109. Funane, T., Kiguchi, M., Atsumori, H., et al., Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy, J. Biomed. Opt., 2011, vol. 16, no. 7, p. 077011.

    Article  PubMed  Google Scholar 

  110. Chaminade, T., Marchant, J.L., Kilner, J., and Frith, C.D., An fMRI study of joint action-varying levels of cooperation correlates with activity in control networks, Front. Hum. Neurosci., 2012, vol. 6, p. 179.

    PubMed  PubMed Central  Google Scholar 

  111. Danko, S.G., Bechtereva, N.P., Shemyakina, N.V., and Antonova, L.V., Electroencephalographic correlates of mental performance of emotional personal and scenic situations: I. Characteristics of local synchronization, Hum. Physiol., 2003, vol. 29, no. 3, p. 263.

    Article  Google Scholar 

  112. Danko, S.G., Bechtereva, N.P., Shemyakina, N.V. and Antonova, L.V., Electroencephalographic correlates of mental performance of emotional personal and scenic situations: II. Characteristics of spatial synchronization, Hum. Physiol., 2003, vol. 29, no. 3, p. 685.

    Article  Google Scholar 

  113. Hakim, A. and Levy, D.J., A gateway to consumers’ minds: achievements, caveats, and prospects of electroencephalography-based prediction in neuromarketing, Wiley Interdiscip. Rev.: Cognit. Sci., 2019, vol. 10, no. 2, p. e1485.

    Article  Google Scholar 

  114. Brockington, G., Balardin, J.B., Zimeo Morais, G.A., et al., From the laboratory to the classroom: the potential of functional near-infrared spectroscopy in educational neuroscience, Front. Psychol., 2018, vol. 9, p. 1840.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zheng, L., Chen, C., Liu, W., et al., Enhancement of teaching outcome through neural prediction of the students' knowledge state, Hum. Brain Mapp., 2018, vol. 39, no. 7, p. 3046.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Chabin, T., Tio, G., Comte, A., et al., The relevance of a conductor competition for the study of emotional synchronization within and between groups in a natural musical setting, Front. Psychol., 2020, vol. 10, p. 2954.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Fachner, J.C., Maidhof, C., Grocke, D., et al., “Telling me not to worry…” Hyperscanning and neural dynamics of emotion processing during guided imagery in music, Front. Psychol., 2019, vol. 10, p. 1561.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bilek, E., Stößel, G., Schäfer, A., et al., State-dependent cross-brain information flow in borderline personality disorder, J.A.M.A. Psychiatry, 2017, vol. 74, no. 9, p. 949.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-015-00412).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Shemyakina or Zh. V. Nagornova.

Ethics declarations

Conflict of interests. The authors declare that they have no real or potential conflict of interest.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shemyakina, N.V., Nagornova, Z.V. Neurophysiological Characteristics of Competition in Skills and Cooperation in Creativity Task Performance: A Review of Hyperscanning Research. Hum Physiol 47, 87–103 (2021). https://doi.org/10.1134/S0362119721010126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119721010126

Keywords:

Navigation