Skip to main content
Log in

Body Mass Index, Cerebrovascular Indicators and Cognitive Function in Patients with Chronic Cerebral Ischaemia

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

It seems relevant to study the relationship between body mass index (BMI), cognitive function, and characteristics of cerebral blood flow in chronic cerebral ischemia (CCI). To demonstrate a link between BMI, and cognitive function and cerebral blood flow in patients with CCI. We examined 83 patients (29 men and 54 women) with CCI and without type 2 diabetes mellitus. We measured the BMI and assessed cognitive function using the Montreal Cognitive Assessment (MoCA) test. Duplex scanning was used to measure the volumetric cerebral blood flow rate in the main cerebral arteries. The correlation between BMI, results of the MoCA and volumetric cerebral blood flow rate in the major cerebral arteries was evaluated using parametric and non-parametric statistical tests. Patients with CCI were found to have a statistically significant Spearman’s rank correlation between BMI and age (R = –0.41; p = 0.0001). BMI correlated with the volumetric blood flow rate in the internal carotid arteries (R = 0.32; p = 0.005). A correlation was found between BMI and the results of the MoCA. Partial correlation coefficients confirmed a statistically significant association between BMI, MoCA test results and the volumetric blood flow rate in the left ICA, when the age of patients with CCI was controlled. The study of correlations between BMI, MoCA test results and the volumetric blood flow rate in the left ICA demonstrated greater psychophysiological preservation in patients with CCI who had a higher BMI, as compared to patients with CCI who had a lower BMI. These data should be considered when developing recommendations for the prevention and treatment of CCI in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Weir, C.B. and Jan, A., BMI Classification Percentile and Cut Off Points, Treasure Island, NV: StatPearls, 2020. PMID: 31082114.

  2. Tafeit, E., Cvirn, G., Lamprecht, M., Hohensinn, M., Moeller, R., Hamlin, M., and Horejsi, R., Using body mass index ignores the intensive training of elite special force personnel, Exp. Biol. Med. (Maywood), 2019, vol. 244, no. 11, pp. 873–879. PMCID: PMC6690141.https://doi.org/10.1177/1535370219848986

    Article  CAS  Google Scholar 

  3. Bourassa, K. and Sbarra, D.A., Body mass and cognitive decline are indirectly associated via inflammation among aging adults, Brain Behav. Immun., 2017, vol. 60, pp. 63–70. https://doi.org/10.1016/j.bbi.2016.09.02327658542

    Article  PubMed  Google Scholar 

  4. Yu, Z.B., Han, S.P., Cao, X.G., and Guo, X.R., Intelligence in relation to obesity: a systematic review and meta-analysis, Obes. Rev., 2010, vol. 11, no. 9, pp. 656–670. https://doi.org/10.1111/j.1467-789X.2009.00656.x19780990

    Article  CAS  PubMed  Google Scholar 

  5. Ronan, L., Alexander-Bloch, A.F., Wagstyl, K., Farooqi, S., Brayne, C., Tyler, L.K., Cam-CAN, and Fletcher, P.C., Obesity associated with increased brain age from midlife, Neurobiol Aging, 2016, vol. 47, pp. 63–70. https://doi.org/10.1016/j.neurobiolaging.2016.07.010.

  6. Debette, S., Beiser, A., Hoffmann, U., Decarli, C., O’Donnell, C.J., Massaro, J.M., Au, R., Himali, J.J., Wolf, P.A., Fox, C.S., and Seshadri, S., Visceral fat is associated with lower brain volume in healthy middle-aged adults, Ann. Neurol., 2010, vol. 68, no. 2, pp. 136–144. PMID: . PMCID: PMC2933649.https://doi.org/10.1002/ana.2206220695006

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang, G.J., Volkow, N.D., Logan, J., Pappas, N.R., Wong, C.T., Zhu, W., Netusil, N., and Fowler, J.S., Brain dopamine and obesity, Lancet, 2001, vol. 357, no. 9253, pp. 354–357. https://doi.org/10.1016/s0140-6736(00)03643-611210998

    Article  CAS  PubMed  Google Scholar 

  8. Willeumier, K.C., Taylor, D.V., and Amen, D.G., Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults, Obesity (Silver Spring), 2011, vol. 19, no. 5, pp. 1095–1097. PMCID: PMC3125099.https://doi.org/10.1038/oby.2011.16

    Article  PubMed  Google Scholar 

  9. Anstey, K.J., Cherbuin, N., Budge, M., and Young, J., Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies, Obes. Rev., 2011, vol. 12, no. 5, pp. e426–e437. https://doi.org/10.1111/j.1467-789X.2010.00825.x21348917

    Article  CAS  PubMed  Google Scholar 

  10. Winter, J.E., MacInnis, R.J., Wattanapenpaiboon, N., and Nowson, C.A., BMI and all-cause mortality in older adults: a meta-analysis, Am. J. Clin. Nutr., 2014, vol. 99, no. 4, pp. 875–890. https://doi.org/10.3945/ajcn.113.06812224452240

    Article  CAS  PubMed  Google Scholar 

  11. Harsányiová, M. and Prokop, P., Living condition, weight loss and cognitive decline among people with dementia, Nurs. Open, 2018, vol. 5, no. 3, pp. 275–284. PMCID: PMC6056446.https://doi.org/10.1002/nop2.13730062020

    Article  PubMed  PubMed Central  Google Scholar 

  12. Whitmer, R.A., Gunderson, E.P., Barrett-Connor, E., Quesenberry, C.P., Jr., and Yaffe, K., Obesity in middle age and future risk of dementia: a 27-year longitudinal population-based study, Br. Med. J., 2005, vol. 330, no. 7504, p. 1360. https://doi.org/10.1136/bmj.38446.466238.E0

    Article  Google Scholar 

  13. Atti, A.R., Palmer, K., Volpato, S., Winblad, B., De Ronchi, D., and Fratiglioni, L., Late-life body mass index and dementia incidence: nine-year follow-up data from the Kungsholmen Project, J. Am. Geriatr. Soc., 2008, vol. 56, no. 1, pp. 111–116. https://doi.org/10.1111/j.1532-5415.2007.01458.x18028342

    Article  PubMed  Google Scholar 

  14. Aparicio, H.J., Himali, J.J., Beiser, A.S., Davis-Plourde, K.L., Vasan, R.S., Kase, C.S., Wolf, P.A., and Seshadri, S., Overweight, obesity, and survival after stroke in the Framingham Heart Study, J. Am. Heart Assoc., 2017, vol. 6, no. 6, p. e004721. https://doi.org/10.1161/JAHA.116.00472128647687

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fokin, V.F. and Ponomareva, N.V., Interdependance of the level of the steady potential of the brain and visual evoked potentials in human aging: the norm and Alzheimer’s disease, Neurosci. Behav. Physiol., 1995, vol. 25, no. 2, pp. 136–141.

    Article  CAS  Google Scholar 

  16. Woolley, C., Thompson, C., Hakendorf, P., et al., The effect of age upon the interrelationship of BMI and inpatient health outcomes, J. Nutr. Health Aging, 2019, vol. 23, pp. 558–563. https://doi.org/10.1007/s12603-019-1206-x

    Article  CAS  PubMed  Google Scholar 

  17. Vidyanti, A.N., Hardhantyo, M., Wiratama, B.S., Prodjohardjono, A., and Hu, C.-J., Obesity is less frequently associated with cognitive impairment in elderly individuals: a cross-sectional study in Yogyakarta, Indonesia, Nutrients, 2020, vol. 12, no. 2, p. 367. https://doi.org/10.3390/nu12020367

    Article  PubMed Central  Google Scholar 

  18. Golden, E., Emiliano, A., Maudsley, S., Windham, B.G., Carlson, O.D., Egan, J.M., Driscoll, I., Ferrucci, L., Martin, B., and Mattson, M.P., Circulating brain-derived neurotrophic factor and indices of metabolic and cardiovascular health: data from the Baltimore Longitudinal Study of Aging, PLoS One, 2010, vol. 5, no. 4, p. e10099. PMCID: PMC2852401.https://doi.org/10.1371/journal.pone.001009920404913

    Article  PubMed  PubMed Central  Google Scholar 

  19. Suslina, Z.A., Illarioshkin, S.N., and Piradov, M.A., Neurology and neurosciences—development predic-tions, Ann. Clin. Exp. Neurol., 2007, vol. 1, no. 1, pp. 5–9.

    Google Scholar 

  20. Morris, J.C., Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type, Int. Psychogeriatr., 1997, vol. 9, suppl. 1, pp. 173–176. https://doi.org/10.1017/s10416102970048709447441

    Article  PubMed  Google Scholar 

  21. Fokin, V.F. and Ponomareva, N.V., Technology for the study of cerebral asymmetry, in Nevrologiya XXI veka: diagnosticheskie, lechebnye i issledovatel’skie tekhnologii. Rukovodstvo dlya vrachei. Tom 3. Sovremennye issledovatel’skie tkehnoloii v eksperimental’noi nevrologii (Neurology of the 21st Century: Diagnostic, Treatment, and Research Technologies: Guide for Physicians, Vol. 3: Modern Research Technologies in Neurology), Moscow: ATMO, 2015, ch. 10, pp. 350–375.

  22. Tanashyan, M.M., Maksimova, M.Yu., and Domashenko, M.A., Putevoditel’ vrachebnykh naznachenii. Terapevticheskii spravochnik. Tom 2. Distsirkulyatornaya entsefalopatiya (Guide for Medical Prescriptions: Therapeutic Handbook, Vol. 2: Vascular Encephalopathy), Moscow: Bionika Media, 2015, pp. 1–25.

  23. Yakhno, N.N., Cognitive impairment in neurological practice, Nevrol. Zh., 2006, vol. 11, no. 1, pp. 4–12.

    Google Scholar 

  24. Batysheva, T.T., Artemova, I.Yu., and Vdovichenko, T.V., Chronic cerebral ischemia: mechanisms of development and modern comprehensive treatment, Consilium Med., 2004, vol. 3, no. 4. http://old.consilium-medicum.com/media/refer/04_04/51.shtml.

  25. Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., and Whitehead, V., The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment, J. Am. Geriatr. Soc., 2005, vol. 53, no. 4, pp. 695–699. ISSN 1532-5415. https://doi.org/10.1111/j.1532-5415.2005.53221.x

  26. Houle, B., Gaziano, T., Farrell, M., Gómez-Olivé, F.X., Kobayashi, L.C., Crowther, N.J., Wade, A.N., Montana, L., Wagner, R.G., Berkman, L., and Tollman, S.M., Cognitive function and cardiometabolic disease risk factors in rural South Africa: baseline evidence from the HAALSI study, BMC Publ. Health, 2019, vol. 19, no. 1, p. 1579. PMCID: PMC6882146.https://doi.org/10.1186/s12889-019-7938-z31775713

    Article  Google Scholar 

  27. Hou, Q., Guan, Y., Yu, W., et al., Associations between obesity and cognitive impairment in the Chinese elderly: an observational study, Clin. Interv. Aging, 2019, vol. 14, pp. 367–373. https://doi.org/10.2147/CIA.S192050

    Article  PubMed  PubMed Central  Google Scholar 

  28. Momtaz, Y.A., Haron, S.A., Hamid, T.A., Ibrahim, R., and Tanjani, P.T., Body Mass Index (BMI) and cognitive functions in later life, Curr. Alzheimer’s Res., 2018, vol. 15, no. 2, pp. 195–200. https://doi.org/10.2174/156720501466617100411424628982334

    Article  CAS  Google Scholar 

  29. Selim, M., Jones, R., Novak, P., Zhao, P., and Novak, V., The effects of body mass index on cerebral blood flow velocity, Clin. Auton. Res., 2008, vol. 18, no. 6, pp. 331–338. https://doi.org/10.1007/s10286-008-0490-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Woolley, C., Thompson, C., Hakendorf, P., et al., The effect of age upon the Interrelationship of BMI and Inpatient Health Outcomes, J. Nutr. Health Aging, 2019, vol. 23, pp. 558–563. https://doi.org/10.1007/s12603-019-1206-x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Fokin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokin, V.F., Medvedev, R.B., Ponomareva, N.V. et al. Body Mass Index, Cerebrovascular Indicators and Cognitive Function in Patients with Chronic Cerebral Ischaemia. Hum Physiol 47, 884–890 (2021). https://doi.org/10.1134/S0362119721080053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119721080053

Keywords:

Navigation