Skip to main content
Log in

Psychophysiological Mechanisms of the Initial Stage of Learning to Read. Part I

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The study of reading mechanisms is an urgent multidisciplinary fundamental scientific problem. Several reviews on the psychophysiology of reading have been published in Russian in recent years, but the current scientific data on the mechanisms of reading skill acquisition remain weakly represented, especially in relation to its initial stages. This review presents a synthesis of the data accumulated in cognitive psychology and psychophysiology on the mechanisms of the initial stage of reading mastery. A conceptual analysis of existing experimental data and theoretical approaches is attempted. Existing theories of shaping the cerebral subsystems for the letter and non-letter symbol processing are discussed. The stages of skill formation, beginning with the pre-writing stage and the development of metalanguage prerequisites, are examined; the nature and mechanisms of establishing sound-letter associations, the brain mechanisms of selectivity and invariance of letter recognition depending on learning experience are discussed. This review includes predominantly methodologically uniform psychophysiological studies of the structural and functional support of reading: ERP-, fMRI- and MEG-studies involving children aged 4–10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Allographs—the variants of spelling the same grapheme (written, printed, lower-case, upper-case, etc.).

REFERENCES

  1. Dehaene, S., Reading in the Brain: The New Science of How We Read, London: Penguin, 2009.

    Google Scholar 

  2. Dehaene, S., Cohen, L., Morais, J., and Kolinsky, R., Illiterate to literate: behavioral and cerebral changes induced by reading acquisition, Nat. Rev. Neurosci., 2015, vol. 16, no. 4, p. 234.

    Article  CAS  PubMed  Google Scholar 

  3. Perfetti, C. and Helder, A., Incremental comprehension examined in event-related potentials: word-to-text integration and structure building, Discourse Process., 2021, vol. 58, no. 1, p. 2.

    Article  Google Scholar 

  4. van Moort, M.L., Jolles, D.D., Koornneef, A., and van den Broek, P., What you read versus what you know: Neural correlates of accessing context information and background knowledge in constructing a mental representation during reading, J. Exp. Psychol. Gen., 2020, vol. 149, no. 11, p. 2084.

    Article  PubMed  Google Scholar 

  5. van Dijk, T.A. and Kintsch, W., Strategies of Discourse Comprehension, New York, NY: Academic, 1983.

    Google Scholar 

  6. Perfetti, C. and Zhang, S., Very early phonological activation in Chinese reading, J. Exp. Psychol. Learn. Mem. Cognit., 1995, vol. 21, no. 1, p. 24.

    Article  Google Scholar 

  7. Perfetti, C.A. and Dunlap, S., Learning to read: general principles and writing system variations, in Learning to Read across Languages: Cross-Linguistic Relationships in First- and Second-Language Literacy Development, New York: Routledge, 2008, p. 25.

    Google Scholar 

  8. Uno, A., Wydell, T.N., Haruhara, N., et al., Relationship between reading/writing skills and cognitive abilities among Japanese primary-school children: normal readers versus poor readers (dyslexics), Reading Writing, 2009, vol. 22, no. 7, p. 755.

    Article  Google Scholar 

  9. Grigorenko, E.L. and Elliot, D., Chtenie o chtenii (Reading about Reading), Voronezh: Aist, 2012.

  10. Verhoeven, L. and Perfetti, C., Universals in learning to read across languages and writing systems, Sci. Stud. Reading, 2021. https://doi.org/10.1080/10888438.2021.1938575

  11. Kornev, A.N., Disleksiya i disgrafiya u detei (Dyslexia and Dysgraphia in Children), St. Petersburg: Gippokrat, 1995.

  12. Kornev, A.N. and Ishimova, O.A., Metodika diagnostiki disleksii u detei: metodicheskoe posobie (Manual for Diagnostics of Child’s Dyslexia), St. Petersburg: S.-Peterb. Gos. Politekh. Univ., 2010.

  13. Henderson, V.W., Alexia and agraphia from 1861 to 1965, Front. Neurol. Neurosci., 2019, vol. 44, p. 39.

    Article  PubMed  Google Scholar 

  14. Luriya, A.R., Vysshie korkovye funktsii cheloveka (Higher Cortical Functions of a Man), St. Petersburg: Piter, 2018.

  15. Tsvetkova, L.S., Neiropsikhologiya scheta, pis’ma i chteniya (Neuropsychology of Counting, Writing, and Reading), Moscow: Modek, 2004.

  16. Caramazza, A. and Coltheart, M., Cognitive neuropsychology twenty years on, Cognit. Neuropsychol., 2006, vol. 23, no. 1, p. 3.

    Article  Google Scholar 

  17. Vasserman, L.I., Dorofeeva, S.A., and Meerson, Ya.A., Metody neiropsikhologicheskoi diagnostiki (Methods of Neuropsychological Diagnostics), St. Petersburg: Stroilespechat’, 1997.

  18. Tonkonogii, I.M., Vvedenie v klinicheskuyu neiropsikhologiyu (Introduction to Clinical Neuropsychology), Leningrad: Meditsina, 1973.

  19. Garakh, Zh.V., Rebreikina, A.B., Strelets, V.B., et al., Neurophysiological mechanisms of reading, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2019, vol. 69, no. 3, p. 294.

    Google Scholar 

  20. Rebreikina, A.B., Larionova, E.V., and Martynova, O.V., Dynamics of evoked potentials during literacy development, Sovrem. Zarubezhnaya Psikhol., 2020, vol. 9, no. 2, p. 21.

    Google Scholar 

  21. Price, C.J., A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading, NeuroImage, 2012, vol. 62, no. 2, p. 816.

    Article  PubMed  Google Scholar 

  22. Martin, A., Schurz, M., Kronbichler, M., and Richlan, F., Reading in the brain of children and adults: a meta-analysis of 40 functional magnetic resonance imaging studies, Hum. Brain Mapp., 2015, vol. 36, no. 5, p. 1963.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cohen, L., Dehaene, S., Naccache, L., et al., The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients, Brain, 2000, vol. 123, p. 291.

    Article  PubMed  Google Scholar 

  24. Pugh, K.R., Mencl, W.E., Jenner, A.R., et al., Neurobiological studies of reading and reading disability, J. Commun. Disord., 2001, vol. 34, no. 6, p. 479.

    Article  CAS  PubMed  Google Scholar 

  25. Pugh, K.R., Frost, S.J., Sandak, R., et al., Mapping the word reading circuitry in skilled and disabled readers, in The Neural Basis of Reading, Cornelissen, P.L., Hansen, P.C., Kringelback, M.L., and Pugh, K.R., Eds., Oxford: Oxford Univ. Press, 2010, p. 281.

    Google Scholar 

  26. Velichkovskii, B., Kognitivnaya nauka. Osnovy psikhologii poznaniya (Cognitive Science. Fundamentals of Psychology of Knowledge), 2nd ed., Moscow: Yurait, 2021, vol. 2.

  27. Kornev, A.N., Narusheniya chteniya i pis’ma u detei (Lesions of Reading and Writing in Children), St. Petersburg: Rech’, 2003, 2nd ed.

  28. Kornev, A.N., Gradual development of operational units of writing and reading as a basic algorithm for development of these skills, in Voprosy psikhologii pis’ma i chteniya. Narusheniya pis’ma i chteniya u detei. Izuchenie i korrektsiya (Psychology of Writing and Reading. Writing and Reading Disorders of Children: Study and Correction), Moscow: Logomat, 2018, p. 5.

  29. Kintsch, W., Revisiting the construction–integration model of text comprehension and its implications for instruction, in Theoretical Models and Processes of Literacy, London: Routledge, 2018, p. 178.

    Google Scholar 

  30. van Dijk, T.A. and Kintsch, W., Cognitive psychology and discourse: recalling and summarizing stories, in Current Trends in Textlinguistics, Berlin: Walter Gruyter, 2014, p. 61.

    Google Scholar 

  31. Lachmann, T. and van Leeuwen, C., Reading as functional coordination: not recycling but a novel synthesis, Front. Psychol., 2014, vol. 5, p. 1046.

    PubMed  PubMed Central  Google Scholar 

  32. Friederici, A.D. and Lachmann, T., From language to reading and reading disability, in Basic Functions of Language, Reading and Reading Disability. Neuropsychology and Cognition, Witruk, E., Friederici, A.D., and Lachmann, T., Eds., Boston, MA: Springer-Verlag, 2002, vol. 20, p. 9.

    Google Scholar 

  33. Pritchard, S.C., Coltheart, M., Marinus, E., and Castles, A., A computational model of the self-teaching hypothesis based on the dual-route cascaded model of reading, Cognit. Sci., 2018, vol. 42, no. 3, p. 722.

    Article  Google Scholar 

  34. Sergent, J., Zuck, E., Levesque, M., and MacDonald, B., Positron emission tomography study of letter and object processing: empirical findings and methodological considerations, Cereb. Cortex, 1992, vol. 2, no. 1, p. 68.

    Article  CAS  PubMed  Google Scholar 

  35. Price, C.J., Wise, R.J., Watson, J.D., et al., Brain activity during reading. The effects of exposure duration and task, Brain, 1994, vol. 117, no. 6, p. 1255.

    Article  PubMed  Google Scholar 

  36. Price, C.J., Wise, R.J., and Frackowiak, R.S., Demonstrating the implicit processing of visually presented words and pseudowords, Cereb. Cortex, 1996, vol. 6, no. 1, p. 62.

    Article  CAS  PubMed  Google Scholar 

  37. Sanderson, A.E., The idea of reading readiness: a re-examination, Educ. Res., 1963, vol. 6, no. 1, p. 3.

    Article  Google Scholar 

  38. Mason, J.M. and Allen, J., A Review of Emergent Literacy with Implications for Research and Practice in Reading, Champaign, IL: Univ. of Illinois at Urbana-Champaign, 1986. https://core.ac.uk/download/ 4826477.pdf

    Google Scholar 

  39. Tunmer, W.E. and Bowey, J.A., Metalinguistic awareness and reading acquisition, in Metalinguistic Awareness in Children: Theory, Research and Implications, Berlin: Springer-Verlag, 1984, p. 144.

    Book  Google Scholar 

  40. Teale, W.H. and Sulzby, E., Emergent literacy: writing and reading, in Writing Research: Multidisciplinary Inquiries into the Nature of Writing Series, Norwood, NJ: Ablex, 1986.

    Google Scholar 

  41. Tunmer, W.E., Herriman, M.L., and Nesdale, A.R., Metalinguistic abilities and beginning reading, Reading Res. Quart., 1988, vol. 23, no. 2, p. 134.

    Article  Google Scholar 

  42. Whitehurst, G.J. and Lonigan, C.J., Child development and emergent literacy, Child Dev., 1998, vol. 69, no. 3, p. 848.

    Article  CAS  PubMed  Google Scholar 

  43. El’konin, D.B., Kak uchit’ detei chitat’ (How to Teach Children to Read), Moscow: Znanie, 1976.

  44. National Reading Panel, Teaching Children to Read: An Evidence-Based Assessment of the Scientific Research Literature on Reading and Its Implications for Reading Instruction, Washington, DC: US Dep. Health Hum. Serv., 2000.

    Google Scholar 

  45. Snow, C., Reading for Understanding: Toward an R&D Program in Reading Comprehension, Santa Monica, CA: RAND, 2002.

    Google Scholar 

  46. Fransman, J., Understanding Literacy: A Concept Paper, Paris: UNESCO, 2005, p. 31.

    Google Scholar 

  47. van den Broek, P., Rapp, D.N., and Kendeou, P., Integrating memory-based and constructionist processes in accounts of reading comprehension, Discourse Process., 2005, vol. 39, nos. 2–3, p. 299.

    Article  Google Scholar 

  48. Egorov, T.G., Psikhologiya ovladeniya navykom chteniya: uchebnoe posobie (Psychology of Development of Reading Skills: Manual), St. Petersburg: Karo, 2016.

  49. Ehri, L.C., The science of learning to read words: a case for systematic phonics instruction, Reading Res. Quart., 2020, vol. 55, no. 3, p. S45.

    Article  Google Scholar 

  50. Frith, U., A developmental framework for developmental dyslexia, Ann. Dyslexia, 1986, vol. 36, no. 1, p. 67.

    Article  CAS  PubMed  Google Scholar 

  51. Kornev, A.N., Stolyarova, E.I., Galperina, E.I., and Giiemar, D.M., The formation of sensorimotor mechanisms of syllable production at the initial stage of reading, Pediatr, 2014, no. 5 (4), p. 85.

  52. Vygotskii, L.S., Myshlenie i rech’: Psikhologicheskie issledovaniya (Thinking and Speech: Psychological Studies), Moscow: Nats. Obraz., 2016.

  53. Karpova, S.N. and Kolobova, I.N., Osobennosti orientirovki na slovo u detei (Specific Orientation of Children on Words), Moscow: Mosk. Gos. Univ., 1978.

  54. Ramus, F., Outstanding questions about phonological processing in dyslexia, Dyslexia, 2001, vol. 7, no. 4, p. 197.

    Article  CAS  PubMed  Google Scholar 

  55. Liberman, I.Y. and Shankweiler, D., Phonology and the problems of learning to read and write, Remedial Spec. Educ., 1985, vol. 6, no. 6, p. 8.

    Article  Google Scholar 

  56. Ron Nelson, J., Benner, G.J., and Gonzalez, J., Learner characteristics that influence the treatment effectiveness of early literacy interventions: a meta-analytic review, Learn. Disabil. Res. Pract., 2003, vol. 18, no. 4, p. 255.

    Article  Google Scholar 

  57. Fletcher, J.M., Stuebing, K.K., Barth, A.E., et al., Cognitive correlates of inadequate response to reading intervention, Sch. Psychol. Rev., 2011, vol. 40, no. 1, p. 3.

    Article  Google Scholar 

  58. Gerst, E.H., Cirino, P.T., Fletcher, J.M., and Yoshida, H., Cognitive and behavioral rating measures of executive function as predictors of academic outcomes in children, Child Neuropsychol., 2017, vol. 23, no. 4, p. 381.

    Article  PubMed  Google Scholar 

  59. Ramus, F., Altarelli, I., Jednoróg, K., et al., Neuroanatomy of developmental dyslexia: pitfalls and promise, Neurosci. Biobehav. Rev., 2018, vol. 84, p. 434.

    Article  PubMed  Google Scholar 

  60. Semenova, O.A., The ontogeny of voluntary control of activity and its cerebral mechanisms, Hum. Physiol., 2007, vol. 33, no. 3, p. 355.

    Article  Google Scholar 

  61. Semenova, O.A., Koshel’kov, D.A., and Machinskaya, R.I., Age-related changes of voluntary activity regulation in senior preschool and primary school age, Kul’t.-Istor. Psikhol., 2007, vol. 3, no. 4, p. 39.

    Google Scholar 

  62. Machinskaya, R.I., Brain control systems, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2015, vol. 65, no. 1, p. 33.

    CAS  Google Scholar 

  63. Kazakova, E.V. and Sokolova, L.V., Indicators of the pre-school period of development to predict the school adaptation of first-year school children, Ekol. Chel., 2018, no. 9, p. 27.

  64. Norton, E.S., Beach, S.D., Eddy, M.D., et al., ERP mismatch negativity amplitude and asymmetry reflect phonological and rapid automatized naming skills in English-speaking kindergartners, Front. Hum. Neurosci., 2021, vol. 15, art. ID 624617.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Raschle, N.M., Zuk, J., and Gaab, N., Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 6, p. 2156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dębska, A., Łuniewska, M., Chyl, K., et al., Neural basis of phonological awareness in beginning readers with familial risk of dyslexia—Results from shallow orthography, NeuroImage, 2016, vol. 132, p. 406.

    Article  PubMed  Google Scholar 

  67. Kovelman, I., Norton, E.S., Christodoulou, J.A., et al., Brain basis of phonological awareness for spoken language in children and its disruption in dyslexia, Cereb. Cortex, 2012, vol. 22, no. 4, p. 754.

    Article  PubMed  Google Scholar 

  68. Yang, X., Peng, P., and Meng, X., How do metalinguistic awareness, working memory, reasoning, and inhibition contribute to Chinese character reading of kindergarten children? Infant Child Dev., 2019, vol. 28, no. 3, p. e2122.

    Article  Google Scholar 

  69. Dehaene, S., Pegado, F., Braga, L.W., et al., How learning to read changes the cortical networks for vision and language, Science, 2010, vol. 330, no. 6609, p. 1359.

    Article  CAS  PubMed  Google Scholar 

  70. Dehaene-Lambertz, G., Monzalvo, K., and Dehaene, S., The emergence of the visual word form: longitudinal evolution of category-specific ventral visual areas during reading acquisition, PLoS Biol., 2018, vol. 16, no. 3, p. e2004103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Centanni, T.M., Norton, E.S., Park, A., et al., Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area, Dev. Sci., 2018, vol. 21, no. 5, p. e12658.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Centanni, T.M., Norton, E.S., Ozernov-Palchik, O., et al., Disrupted left fusiform response to print in beginning kindergartners is associated with subsequent reading, NeuroImage: Clin., 2019, vol. 22, art. ID 101715.

    Article  Google Scholar 

  73. James, K.H., James, T.W., Jobard, G., et al., Letter processing in the visual system: different activation patterns for single letters and strings, Cognit., Affective Behav. Neurosci., 2005, vol. 5, no. 4, p. 452.

    Article  Google Scholar 

  74. James, K.H., Sensori-motor experience leads to changes in visual processing in the developing brain, Dev. Sci., 2010, vol. 13, no. 2, p. 279.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yamada, Y., Stevens, C., Dow, M., et al., Emergence of the neural network for reading in five-year-old beginning readers of different levels of pre-literacy abilities: an fMRI study, NeuroImage, 2011, vol. 57, no. 3, p. 704.

    Article  PubMed  Google Scholar 

  76. van de Walle de Ghelcke, A., Rossion, B., Schiltz, C., and Lochy, A., Developmental changes in neural letter-selectivity: a 1-year follow-up of beginning readers, Dev. Sci., 2021, vol. 24, no. 1, p. e12999.

    PubMed  Google Scholar 

  77. Lochy, A., van Reybroeck, M., and Rossion, B., Left cortical specialization for visual letter strings predicts rudimentary knowledge of letter-sound association in preschoolers, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 30, p. 8544-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, F., Karipidis, I.I., Pleisch, G., et al., Development of print-speech integration in the brain of beginning readers with varying reading skills, Front. Hum. Neurosci., 2020, vol. 14, p. 289.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rayner, K. and Clifton, C., Jr., Language processing in reading and speech perception is fast and incremental: implications for event-related potential research, Biol. Psychol., 2009, vol. 80, no. 1, p. 4.

    Article  PubMed  Google Scholar 

  80. Maurer, U., Zevin, J.D., and McCandliss, B.D., Left-lateralized N170 effects of visual expertise in reading: evidence from Japanese syllabic and logographic scripts, J. Cognit. Neurosci., 2008, vol. 20, no. 10, p. 1878.

    Article  Google Scholar 

  81. Laubrock, J. and Kliegl, R., The eye-voice span during reading aloud, Front. Psychol., 2015, vol. 6, p. 1432.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fabiani, M., Gratton, G., and Federmeier, K.D., Event-related brain potentials: methods, theory, and applications, in Handbook of Psychophysiology, Cacioppo, J.T., Tassinary, L.G., and Berntson, G.G., Eds., Cambridge: Cambridge Univ. Press, 2007, p. 85.

    Google Scholar 

  83. Stites, M.C. and Laszlo, S., Time will tell: a longitudinal investigation of brain-behavior relationships during reading development, Psychophysiology, 2017, vol. 54, no. 6, p. 798.

    Article  PubMed  Google Scholar 

  84. Kemény, F., Banfi, C., Gangl, M., et al., Print-, sublexical and lexical processing in children with reading and/or spelling deficits: an ERP study, Int. J. Psychophysiol., 2018, vol. 130, p. 53.

    Article  PubMed  Google Scholar 

  85. Cantlon, J.F., Pinel, P., Dehaene, S., and Pelphrey, K.A., Cortical representations of symbols, objects, and faces are pruned back during early childhood, Cereb. Cortex, 2011, vol. 21, no. 1, p. 191.

    Article  PubMed  Google Scholar 

  86. Chiarenza, G.A., Olgiati, P., Trevisan, C., et al., Reading aloud: a psychophysiological investigation in children, Neuropsychologia, 2013, vol. 51, no. 3, p. 425.

    Article  PubMed  Google Scholar 

  87. Maurer, U., Brandeis, D., and McCandliss, B.D., Fast, visual specialization for reading in English revealed by the topography of the N170 ERP response, Behav. Brain Funct., 2005, vol. 1, p. 13.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Maurer, U., Brem, S., Kranz, F., et al., Coarse neural tuning for print peaks when children learn to read, NeuroImage, 2006, vol. 33, no. 2, p. 749.

    Article  PubMed  Google Scholar 

  89. Maurer, U., Schulz, E., Brem, S., et al., The development of print tuning in children with dyslexia: evidence from longitudinal ERP data supported by fMRI, NeuroImage, 2011, vol. 57, no. 3, p. 714.

    Article  PubMed  Google Scholar 

  90. Brem, S., Bach, S., Kucian, K., et al., Brain sensitivity to print emerges when children learn letter–speech sound correspondences, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 17, p. 7939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bakos, S., Landerl, K., Bartling, J., et al., Deficits in letter-speech sound associations but intact visual conflict processing in dyslexia: results from a novel ERP-paradigm, Front. Hum. Neurosci., 2017, vol. 11, no. 71, p. 116.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Karipidis, I., Pleisch, G., Röthlisberger, M., et al., Neural initialization of audiovisual integration in prereaders at varying risk for developmental dyslexia, Hum. Brain Mapp., 2017, vol. 38, no. 2, p. 1038.

    Article  Google Scholar 

  93. Froyen, D.J., Bonte, M.L., van Atteveldt, N., and Blomert, L., The long road to automation: neurocognitive development of letter–speech sound processing, J. Cognit. Neurosci., 2009, vol. 21, no. 3, p. 567.

    Article  Google Scholar 

  94. Fraga-González, G., Pleisch, G., Di Pietro, S.V., et al., The rise and fall of rapid occipito-temporal sensitivity to letters: transient specialization through elementary school, Dev. Cognit. Neurosci., 2021, vol. 49, art. ID 100958.

  95. Blackburne, L.K., Eddy, M.D., Kalra, P., et al., Neural correlates of letter reversal in children and adults, PLoS One, 2014, vol. 9, no. 5, p. e98386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 20-113-50 340).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Galperina or A. N. Kornev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. V. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galperina, E.I., Nagornova, J.V., Shemyakina, N.V. et al. Psychophysiological Mechanisms of the Initial Stage of Learning to Read. Part I. Hum Physiol 48, 194–206 (2022). https://doi.org/10.1134/S0362119722020074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722020074

Keywords:

Navigation