Skip to main content
Log in

Neurophysiological Characteristics of “Transferring” the Metaphorical Meaning of Images into Original Titles

  • Published:
Human Physiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, we aimed at finding differences between event-related potentials (ERPs) associated with creating titles for artistic images different in content and style. We had 36 adolescents (16 males and 20 females aged 15.9 ± 1.1 years) take part in two studies and used images from three categories (“caricatures,” “story sketches,” and “paintings”) full of metaphors and symbols as the stimuli. We considered creating titles for caricatures and story sketches of modern artists as a convergent creative task, whereas creating the titles for paintings was viewed as a more open and divergent creative task. During creating titles for the story sketches vs caricatures, the ERP’s amplitude on intervals 116–208 and 492–656 ms was higher in parietal-occipital and frontal, central, and parietal areas of the left hemisphere, respectively. While creating titles for the paintings in the author’s style vs realistic paintings differences in the ERP’s amplitude were found in occipital areas (152–264 ms), frontal and occipital areas bilaterally (208–440 ms), and in frontal, temporal, central, and parietal areas with maximum in the left hemisphere (544–600 ms). A late positive wave was found in two studies: story sketches vs caricatures (with the latency of 492–656 ms) and author’s style vs realistic images (with the latency of 544–600 ms) and may be connected with the extraction and analysis of the metaphorical meaning and symbols in the images for creating the verbal interpretations (titles). Only in performing a convergent creative task (closely related to the interpretation of the artist’s idea), finding the answer was accompanied by a smaller amplitude of late differences in the interval of 1300–1650 ms (more than 1500 ms before the moment when the answer was marked as found), whereas there were no significant differences between finding and not finding the answer in the second study. With the same instruction, the authors suggested that in the first study, finding an answer was accompanied by a more pronounced process of comparing one’s own ideas with a certain (implied by the artist) meaning, which was expressed in late differences between the conditions for finding and not finding answering, while in the second study, in the context of a divergent task, the process of comparing one’s own meaning and inherent one was less pronounced and was not reflected in a number of later differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Fink, A., Benedek, M., and Grabner, R.H., Creativity meets neuroscience: experimental tasks for the neuroscientific study of creative thinking, Methods, 2007, vol. 42, no. 1, p. 68.

    Article  CAS  PubMed  Google Scholar 

  2. Luo, J. and Knoblich, G., Studying insight problem solving with neuroscientific methods, Methods, 2007, vol. 42, no. 1, p. 77.

    Article  CAS  PubMed  Google Scholar 

  3. Dietrich, A. and Kanso, R., A review of EEG, ERP, and neuroimaging studies of creativity and insight, Psychol. Bull., 2010, vol. 136, no. 5, p. 822.

    Article  PubMed  Google Scholar 

  4. Pidgeon, L.M., Grealy, M., Duffy, A.H., et al., Functional neuroimaging of visual creativity: a systematic review and meta-analysis, Brain Behav., 2016, vol. 6, no. 10. e00540

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bekhtereva, N.P., Magiya tvorchestva i psikhofiziologiya: fakty, soobrazheniya, gipotezy (The Magic of Creativity and Psychophysiology: Facts, Considerations, and Hypotheses), St. Petersburg.: Institut Mozga Cheloveka Ross. Akad. Nauk, 2006.

  6. Runco, M.A. and Jaeger, G.J., The standard definition of creativity, Creat. Res. J., 2012, vol. 24, no. 1, p. 92.

    Article  Google Scholar 

  7. Shemyakina, N.V., Danko, S.G., Nagornova, Zh.V., et al., Changes in the power and coherence spectra of the EEG rhythmic components during solution of a verbal creative task of overcoming a stereotype, Hum. Physiol., 2007, vol. 33, no. 5, p. 524.

    Article  Google Scholar 

  8. Shemyakina, N.V. and Nagornova, Z.V., EEG “signs” of verbal creative task fulfillment with and without overcoming self-induced stereotypes, Behav. Sci., (Basel), 2019, vol. 10, no. 1, p. 17.

  9. Camarda, A., Salvia, É., Vidal, J., et al., Neural basis of functional fixedness during creative idea generation: an EEG study, Neuropsychologia, 2018, vol. 118, part A, p. 4.

  10. Sternberg, R.J., The nature of creativity, Creat. Res. J., 2006, vol. 18, no. 1, p. 87.

    Article  Google Scholar 

  11. Bechtereva, N.P., The usefulness of psychophysiology in the maintenance of cognitive life, Int. J. Psychop-hysiol., 2009, vol. 73, no. 2, p. 83.

    Article  Google Scholar 

  12. Mednick, S.A., The associative basis of the creative process, Psychol. Rev., 1962, vol. 69, p. 220.

    Article  CAS  PubMed  Google Scholar 

  13. Benedek, M. and Neubauer, A.C., Revisiting Mednick’s model on creativity-related differences in associative hierarchies: evidence for a common path to uncommon thought, J. Creat. Behav., 2013, vol. 47, no. 4, p. 273.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Abraham, A., Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks, Front. Hum Neurosci., 2014, vol. 8, p. 95.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guilford, J.P., Three faces of intellect, Am. Psychol., 1959, vol. 14, p. 469. https://doi.org/10.1037/h0046827

    Article  Google Scholar 

  16. Kenett, Y.N., Gold, R., and Faust, M., Metaphor comprehension in low and high creative individuals, Front. Psychol., 2018, vol. 9, p. 482.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marinkovic, K., Baldwin, S., Courtney, M.G., et al., Right hemisphere has the last laugh: neural dynamics of joke appreciation, Cognit. Affect. Behav. Neurosci., 2011, vol. 11, no. 1, p. 113.

    Article  Google Scholar 

  18. Perchtold-Stefan, C.M., Fink, A., Rominger, C., and Papousek, I., Motivational factors in the typical display of humor and creative potential: the case of malevolent creativity, Front. Psychol., 2020, vol. 11, p. 1213.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Javaid, S.F. and Pandarakalam, J.P., The association of creativity with divergent and convergent thinking, Psychiat. Danubina, 2021, vol. 33, no. 2, p. 133.

    Article  Google Scholar 

  20. Vartanian, O., Dissociable neural systems for analogy and metaphor: implications for the neuroscience of creativity, Br. J. Psychol., 2012, vol. 103, no. 3, p. 302.

    Article  PubMed  Google Scholar 

  21. Brawer, J. and Amir, O., Mapping the ‘funny bone’: neuroanatomical correlates of humor creativity in professional comedians, Soc. Cognit. Affect. Neurosci., 2021, vol. 16, no. 9, p. 915.

    Article  Google Scholar 

  22. Lu, A. and Zhang, J.X., Event-related potential evidence for the early activation of literal meaning during comprehension of conventional lexical metaphors, Neuropsychologia, 2012, vol. 50, no. 8, p. 1730.

    Article  PubMed  Google Scholar 

  23. Bambini, V., Bertini, C., Schaeken, W., et al., Disentangling metaphor from context: an ERP study, Front. Psychol., 2016, vol. 7, p. 559.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rataj, K., Przekoracka-Krawczyk, A., and van der Lubbe, R.H.J., On understanding creative language: the late positive complex and novel metaphor, Brain Res., 2018, vol. 1678, p. 231.

    Article  CAS  PubMed  Google Scholar 

  25. Cardillo, E.R., Watson, C.E., Schmidt, G.L., et al., From novel to familiar: tuning the brain for metaphors, NeuroImage, 2012, vol. 59, no. 4, p. 3212.

    Article  PubMed  Google Scholar 

  26. Jończyk, R., Kremer, G.E., Siddique, Z., and van Hell, J.G., Engineering creativity: prior experience modulates electrophysiological responses to novel metaphors, Psychophysiology, 2020, vol. 57, no. 10, p. e13630.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Melogno, S., Pinto, M.A., Pollice, C., et al., Understanding novel metaphors: a milestone in the developmental trajectory of children with agenesis of the corpus callosum? Brain Sci., 2020, vol. 10, no. 10, p. 10753.

    Article  Google Scholar 

  28. Hartung, F., Kenett, Y.N., Cardillo, E.R., et al., Context matters: novel metaphors in supportive and non-supportive contexts, NeuroImage, 2020, vol. 212, p. 116645.

    Article  PubMed  Google Scholar 

  29. Nikitina, S.E. and Vasil’eva, N.V., Experimental systemic explanatory dictionary of stylistic terms, Printsipy sostavleniya i izbrannye slovarnye stat’i (Compilation Principles and Selected Entries), Moscow: Inst. Yazykozn. Russ. Akad. Nauk, 1996.

    Google Scholar 

  30. Ozhegov, S.I. and Shvedova, N.Yu., Tolkovyi slovar' russkogo yazyka (Explanatory Dictionary of the Russian Language), Moscow: A TEMP, 2006.

  31. Sun, L., Chen, H., Zhang, C., et al., Decoding brain activities of literary metaphor comprehension: an event-related potential and EEG spectral analysis, Front. Psychol., 2022, vol. 13, p. 913521.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ma, Q., Hu, L., Xiao, C., et al., Neural correlates of multimodal metaphor comprehension: evidence from event-related potentials and time-frequency decompositions, Int. J. Psychophysiol., 2016, vol. 109, p. 81.

    Article  PubMed  Google Scholar 

  33. Adamczyk, P., Jáni, M., Ligeza, T.S., et al., On the role of bilateral brain hypofunction and abnormal lateralization of cortical information flow as neural underpinnings of conventional metaphor processing impairment in schizophrenia: an fMRI and EEG study, Brain Topogr., 2021, vol. 34, no. 4, p. 537.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Deckert, M., Schmoeger, M., Geist, M., et al., Electrophysiological correlates of conventional metaphor, irony, and literal language processing—an event-related potentials and eLORETA study, Brain Lang., 2021, vol. 215, p. 104930.

    Article  PubMed  Google Scholar 

  35. Bardolph, M. and Coulson, S., How vertical hand movements impact brain activity elicited by literally and metaphorically related words: an ERP study of embodied metaphor, Front. Hum Neurosci., 2014, vol. 8, p. 1031.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Casasanto, D. and de Bruin, A., Metaphors we learn by: directed motor action improves word learning, Cognition, 2019, vol. 182, p. 177.

    Article  PubMed  Google Scholar 

  37. Yang, J. and Shu, H., Involvement of the motor system in comprehension of non-literal action language: a meta-analysis study, Brain Topogr., 2015, vol. 29, no. 1, p. 94.

    Article  PubMed  Google Scholar 

  38. Diaz, M.T. and Eppes, A., Factors influencing right hemisphere engagement during metaphor comprehension, Front. Psychol., 2018, vol. 9, p. 414.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sotillo, M., Carretié, L., Hinojosa, J.A., et al., Neural activity associated with metaphor comprehension: spatial analysis, Neurosci. Lett., 2005, vol. 373, no. 1, p. 5.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, S.S. and Dapretto, M., Metaphorical vs. literal word meanings: fMRI evidence against a selective role of the right hemisphere, NeuroImage, 2006, vol. 29, no. 2, p. 536.

    Article  PubMed  Google Scholar 

  41. Rapp, A.M., Leube, D.T., Erb, M., et al., Neural correlates of metaphor processing, Cognit. Brain Res., 2004, vol. 20, no. 3, p. 395.

    Article  Google Scholar 

  42. Schmidt, G.L. and Seger, C.A., Neural correlates of metaphor processing: the roles of figurativeness, familiarity and difficulty, Brain Cognit., 2009, vol. 71, no. 3, p. 375.

    Article  Google Scholar 

  43. García-Madariaga, J., Moya, I., Recuero, N., and Blasco, M.F., Revealing unconscious consumer reactions to advertisements that include visual metaphors: a neurophysiological experiment, Front. Psychol., 2020, vol. 12, no. 11, p. 760.

    Article  Google Scholar 

  44. Wang, R.W.Y. and Liu, I.N., Temporal and electroencephalography dynamics of surreal marketing, Front. Neurosci., 2022, vol. 16, p. 949008.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Raven, J. and Raven, J., Raven progressive matrices, Handbook of Nonverbal Assessment, McCallum, R.S., Ed., Boston, MA: Springer-Verlag, 2003, p. 223. https://doi.org/10.1007/978-1-4615-0153-4_11.

  46. Mednick, T. and Mednick, F.M., Creative thinking and level of intelligence, J. Creat. Behav. 1967, vol. 1, p. 428.

    Article  Google Scholar 

  47. Voronin, A.N. and Galkina, T.V., Diagnosis of verbal creativity (adaptation of Mednick RAT), in Metody psikhologicheskoi diagnostiki (Methods of Psychological Diagnosis), Moscow: Inst. Psichol. Ross. Akad. Nauk, 1994, no. 2, p. 40.

  48. Tunik, E.E., Test Torrensa: diagnostika kreativnosti (Torrance Test: Diagnosis of Creativity), St. Petersburg: IMATON, 1998.

  49. Shemyakina, N.V. and Nagornova, Zh.V., Event-related changes in EEG spectral power corresponding to creative and trivial decisions, Ross. Fiziol. Zh. im. I. M. Sechenova, 2020, vol. 106, no. 7, p. 880. https://doi.org/10.31857/S0869813920070067

    Article  Google Scholar 

  50. Shemyakina, N.V. and Nagornova, Zh.V., Does the instruction “be original and create” actually affect the EEG correlates of performing creative tasks? Hum. Physiol., 2020, vol. 46, no. 6, p. 587. https://doi.org/10.1134/S0362119720060092

    Article  Google Scholar 

  51. Nagornova, Zh.V., Galkin, V.A., Vasen’kina, V.A., et al., Neurophysiological characteristics of alternative uses task performance by means of ERP and ERS/ERD data analysis depending on the subject’s productivity and originality levels, Hum. Physiol., 2022, vol. 48, no. 6, p. 609. https://doi.org/10.1134/S036211972270013X

    Article  Google Scholar 

  52. Vigario, R.N., Extraction of ocular artefacts from EEG using independent component analysis, Electroencephalogr. Clin. Neurophysiol., 1997, vol. 103, no. 3, p. 395.

    Article  CAS  PubMed  Google Scholar 

  53. Jung, T.P., Makeig, S., Westerfield, M., et al., Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects, Clin. Neurophysiol., 2000, vol. 111, no. 10, p. 1745.

    Article  CAS  PubMed  Google Scholar 

  54. Tereshchenko, E.P., Ponomarev, V.A., Kro-potov, Yu.D., and Müller, A., Comparative efficiencies of different methods for removing blink artifacts in analyzing quantitative electroencephalogram and event-related potentials, Hum. Physiol., 2009, vol. 35, no. 2, p. 241. https://doi.org/10.1134/S0362119709020157

    Article  Google Scholar 

  55. Libet, B., Gleason, C.A., Wright, E.W., and Pearl, D.K., Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential): the unconscious initiation of a freely voluntary act, Brain, 1983, vol. 106, part 3, p. 623.

    Article  PubMed  Google Scholar 

  56. Zhu, X., Oh, Y., Chesebrough, C., et al., Pre-stimulus brain oscillations predict insight versus analytic problem-solving in an anagram task, Neuropsychologia, 2021, vol. 162, p. 108044.

    Article  PubMed  Google Scholar 

  57. Jauk, E., Benedek, M., Dunst, B., and Neubauer, A.C., The relationship between intelligence and creativity: new support for the threshold hypothesis by means of empirical breakpoint detection, Intelligence, 2013, vol. 41, no. 4, p. 212.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Karwowski, M. and Gralewski, J., Threshold hypothesis: fact or artifact? Think Skills Creat., 2013, vol. 8, no. 1, p. 25.

    Article  Google Scholar 

  59. Shi, B., Wang, L., Yang, J., et al., Relationship between divergent thinking and intelligence: an empirical study of the threshold hypothesis with Chinese children, Front. Psychol., 2017, vol. 8, p. 254.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Torrance, E.P., The Torrance Tests of Creative Thinking — Norms — Technical Manual Research Edition — Verbal Tests, Forms A and B — Figural Tests, Forms A and B, Princeton, NJ: Personnel Press. 1966.

    Google Scholar 

  61. Taylor, M.J., Batty, M., and Itier, R.J., The faces of development: a review of early face processing over childhood, J. Cognit. Neurosci., 2004, vol. 16, no. 8, p. 1426.

    Article  CAS  Google Scholar 

  62. Koivisto, M. and Revonsuo, A., Event-related brain potential correlates of visual awareness, Neurosci. Biobehav. Rev., 2010, vol. 34, no. 6, p. 922.

    Article  PubMed  Google Scholar 

  63. Rugg, M.D. and Coles, M.G.H., Electrophysiology of mind, in Event-Related Brain Potentials and Cognition, Oxford, UK, 1995, p. 40.

  64. Di Russo, F., Martinez, A., Sereno, M.I., et al., Cortical sources of the early components of the visual evoked potential, Hum. Brain Mapp., 2002, vol. 15, no. 2, p. 95.

    Article  PubMed  Google Scholar 

  65. Zhang, W. and Luck, S.J., Feature-based attention modulates feedforward visual processing, Nat. Neurosci., 2009, vol. 12, no. 1, p. 4.

    Article  CAS  Google Scholar 

  66. Hu, R., Zhang, L., Meng, P., et al., The neural responses of visual complexity in the Oddball paradigm: an ERP study, Brain Sci., 2022, vol. 12, no. 4, p. 447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weissman, B. and Tanner, D., A strong wink between verbal and emoji-based irony: how the brain processes ironic emojis during language comprehension, PLoS One, 2018, vol. 13, no. 8. e0201727

    Article  PubMed  PubMed Central  Google Scholar 

  68. Markey, P.S., Jakesch, M., and Leder, H., Art looks different—semantic and syntactic processing of paintings and associated neurophysiological brain responses, Brain Cognit., 2019, vol. 134, p. 58.

    Article  Google Scholar 

  69. Luo, J., Li, W., Fink, A., et al., The time course of breaking mental sets and forming novel associations in insight-like problem solving: an ERP investigation, Exp. Brain Res., 2011, vol. 212, no. 4, p. 583.

    Article  PubMed  Google Scholar 

  70. Chen, J. and Cheng, Y., The relationship between aesthetic preferences of people for ceramic tile design and neural responses: an event-related potential study, Front. Hum Neurosci., 2022, vol. 16, p. 994195.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fudali-Czyż, A, Francuz, P, and Augustynowicz, P., The effect of art expertise on eye fixation-related potentials during aesthetic judgment task in focal and ambient modes, Front. Psychol., 2018, vol. 16, no. 9, p. 1972.

    Article  Google Scholar 

  72. Augustin, M.D., Leder, H., Hutzler, F., and Carbon, C.C., Style follows content: on the microgenesis of art perception, Acta Psychol., 2008, vol. 128, no. 1, p. 127.

    Article  Google Scholar 

  73. Augustin, M.D., Defranceschi, B., Fuchs, H.K., et al., The neural time course of art perception: an ERP study on the processing of style versus content in art, Neuropsychologia, 2011, vol. 49, no. 7, p. 2071.

    Article  PubMed  Google Scholar 

  74. Rutter, B., Kröger, S., Hill, H., et al., Can clouds dance? Part 2: an ERP investigation of passive conceptual expansion, Brain Cognit., 2012, vol. 80, no. 3, p. 301.

    Article  Google Scholar 

  75. Kröger, S., Rutter, B., Hill, H., et al., An ERP study of passive creative conceptual expansion using a modified alternate uses task, Brain Res., 2013, vol. 1527, p. 189.

    Article  PubMed  Google Scholar 

  76. Abraham, A., Rutter, B., and Hermann, C., Conceptual expansion via novel metaphor processing: an ERP replication and extension study examining individual differences in creativity, Brain Lang., 2021, vol. 221, p. 105007.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the participants of the study and the artists who provided digital copies of their works for use in the research. The authors are also grateful to Yu.G. Potapov for advice when working with art material.

Funding

The study was carried out as part of state task no. 075-0152-22-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. V. Nagornova.

Ethics declarations

Ethical standards. All studies were carried out in accordance with the principles of biomedical ethics, formulated in the Declaration of Helsinki of 1964 and its subsequent updates, and approved by the Ethics Committee of the National Educational Establishment of the Academy of Talents, St. Petersburg (Minutes no. 1 dated September 9, 2021 GB NOU Academy of Talents, no. 2 dated September 20, 2021 GB NOU Academy of Talents).

Conflict of interest. The authors declare no obvious or potential conflicts of interest related to the publication of this article.

Additional information

Translated by A. Deryabina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagornova, Z.V., Galkin, V.A. & Shemyakina, N.V. Neurophysiological Characteristics of “Transferring” the Metaphorical Meaning of Images into Original Titles. Hum Physiol 49, 251–263 (2023). https://doi.org/10.1134/S0362119723700263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723700263

Keywords:

Navigation