Skip to main content
Log in

Average composition of basic magmas and mantle sources of island arcs and active continental margins estimated from the data on melt inclusions and quenched glasses of rocks

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Based on the generalization of data on melt inclusions and quenched glasses, the average compositions of subduction (island arc and active continental margin settings) basic magmas were estimated. The main geochemical features of the average composition of these magmas are significant depletion in Nb and Ta, less significant depletion in Ti, Zr, and Sm, and enrichment in Cl, H2O, F, and P in the primitive mantlenormalized patterns. The average normalized contents of moderately incompatible HREE in these magmas are close to those in the basic magmas of other geodynamic settings. Subduction basic magmas exhibit negative correlation of Li, Y, Dy, Er, Yb, Lu, and Ti contents with MgO content. Most of incompatible elements (Nb, Ta, U, Th, LREE) do not correlate with MgO, but correlate with each other and K2O. Variations in element contents are related to crystallization differentiation, magma mixing, and possibly, participation of several sources. The water content in the island arc basic magmas varies from almost zero value to more than 6 wt %. Most compositions are characterized by weak negative correlation between H2O and MgO contents, but some compositions define a negative correlation close to that in magmas of mid-ocean ridges (MOR). Considered magmas demonstrate distinct positive correlation between MgO content and homogenization temperature, practically coinciding with that of MOR magmas. Modeling of phase equilibria revealed widening of crystallization field of olivine in the magmas of subduction zones compared to MOR magmas. This can be related to the high water content in subduction magmas. Simultaneous liquidus crystallization of olivine and clinopyroxene in subduction magmas occurs at pressure approximately 5 kbar higher than that of MOR magmas. Based on the average ratios of trace element to K2O content, we determined the average compositions for subduction magma sources. Relative to depleted mantle, they are enriched in all incompatible elements, with positive anomalies of U, Rb, Ba, B, Pb, Cl, H2O, F, and S, and negative anomalies of Th, K, Be, Nb, Ta, Li, Nd, Pb, and Ti. A general elevated content of incompatible elements indicates a reworking of the rocks of mantle wedge by fluids and melts that were released from the upper layers of subducted plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Anderson, “The Before-Eruption Water Content of Some High-Alumina Magmas,” Bull. Volcanol. 37, 530–552 (1973).

    Article  Google Scholar 

  2. R. J. Arculus and A. L. Bloomfield, “Major-Element Geochemistry of Ashes from Sites 782, 784, and 786 in the Bonin Forearc,” Proc. Ocean Drilling Program, Sci. Res. 125, 277–292 (1992).

    Google Scholar 

  3. R. J. Arculus, “Island Arc Magmatism in Relation to the Evolution of the Crust and Mantle,” Tectonophysics 75, 113–133 (1981).

    Article  Google Scholar 

  4. A. A. Ariskin, “Phase Equilibria Modeling in Igneous Petrology: Use of COMAGMAT Model for Simulating Fractionation of Ferro-Basaltic Magmas and the Genesis of High-Alumina Basalt,” J. Volcanol. Geotherm. Res. 90, 115–162 (1999).

    Article  Google Scholar 

  5. A. A. Ariskin, G. S. Barmina, M. Ya. Frenkel, and R. L. Nielsen, “COMAGMAT: a Fortran Program To Model Magma Differentiation Processes,” Comput. Geosci. 19, 1155–1170 (1993).

    Article  Google Scholar 

  6. S. Auer, I. Bindeman, P. Wallace, et al., “The Origin of Hydrous, High-δ18O Voluminous Volcanism: Diverse Oxygen Isotope Values and High Magmatic Water Content within the Volcanic Record of Klyuchevskoy Volcano, Kamchatka, Russia,” Contrib. Mineral. Petrol. 157, 209–230 (2009).

    Article  Google Scholar 

  7. J. Blundy and K. Cashman, “Rapid Decompression-Driven Crystallization Recorded by Melt Inclusions from Mount St. Helens Volcano,” Geology 33, 793–796 (2005).

    Article  Google Scholar 

  8. J. Blundy, K. Cashman, and M. Humphreys, “Magma Heating by Decompression-Driven Crystallization Beneath Andesite Volcanoes,” Nature 443, 76–80 (2006).

    Article  Google Scholar 

  9. P. Cervantes and P. Wallace, “Magma Degassing and Basaltic Eruption Styles: a Case Study of ∼2000 Year BP Xitle Volcano in Central Mexico,” J. Volcanol. Geotherm. Res 120, 249–270 (2003).

    Article  Google Scholar 

  10. T. Churikova, G. Worner, N. Mironov, and A. Kronz, “Volatile (S, Cl and F) and Fluid Mobile Trace Element Compositions in Melt Inclusions: Implications for Variable Fluid Sources across the Kamchatka Arc,” Contrib. Mineral. Petrol. 154, 217–239 (2007).

    Article  Google Scholar 

  11. P. D. Clift, G. D. Layne, Y. M. R. Najman, et al., “Temporal Evolution of Boron Flux in the NE Japan and Izu Arcs Measured by Ion Microprobe from the Forearc Tephra Record,” J. Petrol. 44, 1211–1236 (2003).

    Article  Google Scholar 

  12. L. V. Danyushevsky, R. A. Leslie, A. J. Crawford, and P. Durance, “Melt Inclusions in Primitive Olivine Phenocrysts: the Role of Localized Reaction Processes in the Origin of Anomalous Compositions,” J. Petrol. 45, 2531–2553 (2004).

    Article  Google Scholar 

  13. M. A. Elburg, V. S. Kamenetsky, J. D. Foden, and A. Sobolev, “The Origin of Medium-K Ankaramitic Arc Magmas from Lombok (Sunda Arc, Indonesia): Mineral and Melt Inclusion Evidence,” Chem. Geol. 240, 260–279 (2007).

    Article  Google Scholar 

  14. J. Gill, Orogenic Andesites and Plate Tectonics (Springer, Berlin, 1981).

    Google Scholar 

  15. A. A. Gurenko, A. B. Belousov, R. B. Trumbull, and A. V. Sobolev, “Explosive Basaltic Volcanism of the Chikurachki Volcano (Kurile Arc, Russia): Insights on Pre-Eruptive Magmatic Conditions and Volatile Budget Revealed from Phenocryst-Hosted Melt Inclusions and Groundmass Glasses,” J. Volcanol. Geotherm. Res 147, 203–232 (2005).

    Article  Google Scholar 

  16. W. E. Halter, C. A. Heinrich, and T. Pettke, “Laser-Ablation ICP-MS Analysis of Silicate and Sulfide Melt Inclusions in An Andesitic Complex II: Evidence for Magma Mixing and Magma Chamber Evolution,” Contrib. Mineral. Petrol. 147, 397–412 (2004).

    Article  Google Scholar 

  17. M. Hamada and T. Fujii, “H2O-Rich Island Arc Low-K Tholeiite Magma Inferred from Ca-Rich Plagioclase-Melt Inclusion Equilibria,” Geochemical Journal 41, 437–461 (2007).

    Google Scholar 

  18. S. R. Hart and G. A. Gaetani, “Mantle Pb Paradoxes: the Sulfide Solution,” Contrib. Mineral. Petrol. 152, 295–308 (2006).

    Article  Google Scholar 

  19. A. W. Hofmann, “Sampling Mantle Heterogeneity Through Oceanic Basalts: Isotopes and Trace Elements,” in Treatise on Geochemistry (Elsevier, Amsterdam, 2003), Vol. 2, pp. 61–101.

    Google Scholar 

  20. M. C. S. Humphreys, J. D. Blundy, and R. S. J. Sparks, “Shallow-Level Decompression Crystallisation and Deep Magma Supply at Shiveluch Volcano,” Contrib. Mineral. Petrol. 155, 45–61 (2008).

    Article  Google Scholar 

  21. P. E. Izbekov, J. C. Eichelberger, and B. V. Ivanov, “The 1996 Eruption of Karymsky Volcano, Kamchatka: Historical Record of Basaltic Replenishment of An Andesite Reservoir,” J. Petrol. 45, 2325–2345 (2004).

    Article  Google Scholar 

  22. G. A. Jenner, S. F. Foley, S. E. Jackson, et al., “Determination of Partition Coefficients for Trace Elements in High Pressure-Temperature Experimental Run Products by Laser Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICPMS),” Geochim. Cosmochim. Acta 58, 5099–5103 (1994).

    Google Scholar 

  23. P. B. Kelemen, K. Hanghoj, and A. R. Greene, “One View of the Geochemistry of Subduction-Related Magmatic Arcs, with An Emphasis on Primitive Andesite and Lower Crust,” in Treatise on Geochemistry (Elsevier, Amsterdam, 2003), Vol. 3, pp. 593–659.

    Google Scholar 

  24. J.-I. Kimura and Y. Nagahashi, “Origin of a Voluminous Iron-Enriched High-K Rhyolite Magma Erupted in the North Japan Alps at 1.75 Ma: Evidence for Upper Crustal Melting,” J. Volcanol. Geotherm. Res 167, 81–99 (2007).

    Article  Google Scholar 

  25. S. Klemme, S. Prowatke, K. Hametner, and D. Gunther, “Partitioning of Trace Elements Between Rutile and Silicate Melts: Implications for Subduction Zones,” Geochim. Cosmochim. Acta 69, 2361–2371 (2005).

    Article  Google Scholar 

  26. E. J. Kohut, R. J. Stern, A. J. R. Kent, et al., “Evidence for Adiabatic Decompression Melting in the Southern Mariana Arc from High-Mg Lavas and Melt Inclusions,” Contrib. Mineral. Petrol. 152, 201–221 (2006).

    Article  Google Scholar 

  27. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, et al., “Canonical Ratios of Trace Element in Basic Magmas of Various Geodynamic Settings: Estimation from Compositions of Melt Inclusions and Rock Glasses,” Dokl. Akad. Nauk 426(2), 222–225 (2009b) [Dokl. Earth Sci. 426, 611–614 (2009b)].

    Google Scholar 

  28. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, et al., “Peralkaline Silicic Melts of Island Arcs, Active Continental Margins, and Intraplate Continental Settings: Evidence from the Investigation of Melt Inclusions in Minerals and Quenched Glasses of Rocks,” Petrologiya 17(4), 437–456 (2009a) [Petrology 17, 410–428 (2009a)].

    Google Scholar 

  29. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, et al., “Volatiles in Basaltic Magmas of Ocean Islands and Their Mantle Sources: I. Melt Compositions Deduced from Melt Inclusions and Glasses in the Rocks,” Geokhimiya, No. 2, 131–149 (2007c) [Geochem. Int. 43, 105–122 (2007c)].

  30. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, et al., “Volatiles in Basaltic Magmas of Ocean Islands and Their Mantle Sources: II.Estimation of Contents in Mantle Reservoirs,” Geokhimiya, No. 4, 355–369 (2007d) [Geochem. Int. 45, 313–326 (2007d)].

  31. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, et al., “Estimation of the Average Contents of H2O, Cl, F, and S in the Depleted Mantle on the Basis of the Compositions of Melt Inclusions and Quenched Glasses of Mid-Ocean Ridge Basalts,” Geokhimiya, No. 3, 243–266 (2006a) [Geochem. Int. 44, 209–231 (2006a)].

  32. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, et al., “Composition and Chemical Structure of Oceanic Mantle Plumes,” Petrologiya 14(5), 482–507 (2006b) [Petrology 14, 452–476 (2006b)].

    Google Scholar 

  33. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, et al., “Average Contents of Incompatible and Volatile Components in Depleted, Oceanic Plume, and Within-Plate Continental Mantle Types,” Dokl. Akad. Nauk 415(3), 389–393 (2007a) [Dokl. Earth Sci. 415, 880–884 (2007a)].

    Google Scholar 

  34. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, et al., “Average Compositions of Magmas and Mantle Sources of Mid-Ocean Ridges and Intraplate Oceanic and Continental Settings Estimated from the Data on Melt Inclusions and Quenched Glasses of Basalts,” Petrologiya 15(4), 361–396 (2007b) [Petrology 15, 335–368 (2007b)].

    Google Scholar 

  35. V. I. Kovalenko, V. B. Naumov, V. V. Yarmolyuk, et al., “Balance of H2O and Cl between the Earth’s Mantle and Outer Shells,” Geokhimiya, No. 10, 1041–1070 (2002) [Geochem. Int. 40, 943–971 (2002)].

  36. D. J. Kratzmann, S. Carey, R. Scasso, and J.-A. Naranjo, “Compositional Variations and Magma Mixing in the 1991 Eruptions of Hudson Volcano, Chile,” Bull. Volcanol. 71, 419–439 (2009).

    Article  Google Scholar 

  37. J. F. Larsen, “Rhyodacite Magma Storage Conditions Prior To the 3430 yBP Caldera-Forming Eruption of Aniakchak Volcano, Alaska,” Contrib. Mineral. Petrol. 152, 523–540 (2006).

    Article  Google Scholar 

  38. Y. Liu, A. T. Anderson, C. J. N. Wilson, et al., “Mixing and Differentiation in the Oruanui Rhyolitic Magma, Taupo, New Zealand: Evidence from Volatiles and Trace Elements in Melt Inclusions,” Contrib. Mineral. Petrol. 151, 71–87 (2006).

    Article  Google Scholar 

  39. A. H. Maria and J. F. Luhr, “Lamprophyres, Basanites, and Basalts of the Western Mexican Volcanic Belt: Volatile Contents and a Vein-Wallrock Melting Relationship,” J. Petrol. 49, 2123–2123 (2008).

    Article  Google Scholar 

  40. J.-C. C. Mercier, “Single-Pyroxene Thermobarometry,” Tectonophysics 70, 1–37 (1980).

    Article  Google Scholar 

  41. N. Metrich, A. Bertagnini, P. Landi, and M. Rosi, “Crystallization Driven by Decompression and Water Loss at Stromboli Volcano (Aeolian Islands, Italy),” J. Petrol. 42, 1471–1490 (2001).

    Article  Google Scholar 

  42. N. L. Mironov, M. V. Portnyagin, P. Yu. Plechov, and S. A. Khubunaya, “Final Stages of Magma Evolution in Klyuchevskoy Volcano, Kamchatka: Evidence from Melt Inclusions in Minerals of High-Alumina Basalts,” Petrologiya 9, 51–69 (2001) [Petrology 9, 46–62 (2001)].

    Google Scholar 

  43. R. Mustard, T. Ulrich, V. Kamenetsky, and T. Mernagh, “Gold and Metal Enrichment in Natural Granitic Melts During Fractional Crystallization,” Geology 34, 85–88 (2006).

    Article  Google Scholar 

  44. V. B. Naumov, V. I. Kovalenko, A. D. Babanskii, and M. L. Tolstykh, “Genesis of Andesites: Evidence from Studies of Melt Inclusions in Minerals,” Petrologiya 5(6), 654–665 (1997) [Petrology 5, 586–596 (1997)].

    Google Scholar 

  45. V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, and V. V. Yarmolyuk, “Average Concentrations of Major, Volatile, and Trace Elements in Magmas of Various Geodynamic Settings,” Geokhimiya, No. 10, 1113–1124 (2004) [Geochem. Int. 42, 977–987 (2004)].

  46. H. Palme and H. St. C. O’Neill, “Cosmochemical Estimates of Mantle Composition,” in Treatise on Geochemistry (Elsevier, Amsterdam, 2003), Vol. 2, pp. 1–38.

    Google Scholar 

  47. M. Portnyagin, K. Hoernle, P. Plechov, et al., “Constraints on Mantle Melting and Composition and Nature of Slab Components in Volcanic Arcs from Volatiles (H2O, S, Cl, F) and Trace Elements in Melt Inclusions from the Kamchatka Arc,” Earth Planet. Sci. Lett. 255, 53–69 (2007).

    Article  Google Scholar 

  48. O. Reubi and J. Blundy, “Assimilation of Plutonic Roots, Formation of High-K Exotic Melt Inclusions and Genesis of Andesitic Magmas at Volcan De Colima, Mexico,” J. Petrol. 49, 2221–2243 (2008).

    Article  Google Scholar 

  49. K. Roggensack, “Sizing Up Crystal and Their Melt Inclusions: a New Approach To Crystallization Studies,” Earth Planet. Sci. Lett. 187, 221–237 (2001).

    Article  Google Scholar 

  50. K. Roggensack, R. L. Hervig, S. B. McKnight, and S. N. Williams, “Explosive Basaltic Volcanism from Cerro Negro Volcano: Influence of Volatiles on Eruptive Style,” Science 277(5332), 1639–1642 (1997).

    Article  Google Scholar 

  51. M. C. Rowe, A. J. R. Kent, and R. L. Nielsen, “Subduction Influence on Oxygen Fugacity and Trace and Volatile Elements in Basalts across the Cascade Volcanic Arc,” J. Petrol. 50, 61–91 (2009).

    Article  Google Scholar 

  52. R. L. Rudnick and S. Gao, “Composition of the Continental Crust,” in Treatise on Geochemistry (Elsevier, Amsterdam, 2003), Vol. 3, pp. 1–64.

    Google Scholar 

  53. V. J. M. Salters and A. Stracke, “The Composition of the Depleted Mantle,” Geochem. Geophys. Geosyst 5(5), 1–27 (2004).

    Article  Google Scholar 

  54. P. Schiano, R. Clocchiatti, P. Boivin, and E. Medard, “The Nature of Melt Inclusions Inside Minerals in An Ultramafic Cumulate from Adak Volcanic Center, Aleutian Arc: Implications for the Origin of High-Al Basalts,” Chem. Geol. 203, 169–179 (2004).

    Article  Google Scholar 

  55. M. W. Schmidt, A. Dardon, G. Chazot, and R. Vannucci, “The Dependence of Nb and Ta Rutile-Melt Partitioning on Melt Composition and Nb/Ta Fractionation during Subduction Processes,” Earth Planet. Sci. Lett. 226, 415–432 (2004).

    Article  Google Scholar 

  56. P. Shane, V. C. Smith, and I. Nairn, “Millennial Timescale Resolution of Rhyolite Magma Recharge at Tarawera Volcano: Insights from Quartz Chemistry and Melt Inclusions,” Contrib. Mineral. Petrol 156, 397–411 (2008).

    Article  Google Scholar 

  57. T. W. Sisson and G. D. Layne, “H2O in Basalt and Basaltic Andesite Glass Inclusions from Four Subduction-Related Volcanoes,” Earth Planet. Sci. Lett. 117, 619–635 (1993).

    Article  Google Scholar 

  58. A. V. Sobolev and M. Chaussidon, “H2O Concentrations in Primary Melts from Supra-Subduction Zones and Mid-Ocean Ridges: Implications for H2O Storage and Recycling in the Mantle,” Earth Planet. Sci. Lett. 137, 45–55 (1996).

    Article  Google Scholar 

  59. J. Stix, G. D. Layne, and S. N. Williams, “Mechanism of Degassing at Nevado Del Ruiz Volcano, Colombia,” J. Geol. Soc. 160, 507–521 (2003).

    Article  Google Scholar 

  60. S. M. Straub and G. D. Layne, “Decoupling of Fluids and Fluid-Mobile Elements During Shallow Subduction: Evidence from Halogen-Rich Andesite Melt Inclusions from the Izu Arc Volcanic Front,” Geochem. Geophys. Geosyst. 4(7), 1–24 (2003).

    Article  Google Scholar 

  61. W. D. Sun, R. J. Arculus, V. C. Bennett, et al., “Evidence for Rhenium Enrichment in the Mantle Wedge from Submarine Arc-Like Volcanic Glasses (Papua New Guinea),” Geology 31, 845–848 (2003).

    Article  Google Scholar 

  62. M. L. Tolstykh, V. B. Naumov, A. D. Babanskii, et al., “Chemical Composition, Volatile Components, and Trace Elements in Andesitic Magmas of the Kurile-Kamchatka Region,” Petrologiya 11(5), 451–470 (2003) [Petrology 5, 407–425 (2003)].

    Google Scholar 

  63. N. Vigouroux, P. J. Wallace, and A. J. R. Kent, “Volatiles in High-K Magmas from the Western Trans-Mexican Volcanic Belt: Evidence for Fluid Fluxing and Extreme Enrichment of the Mantle by Subduction Processes,” J. Petrol. 49(9), 1589–1618 (2008).

    Article  Google Scholar 

  64. T. A. Vogel and R. Aines, “Melt Inclusions from Chemically Zoned Ash Flow Sheets from the Southwest Nevada Volcanic Field,” J. Geophy. Res. 3, 5591–5610 (1996).

    Article  Google Scholar 

  65. J. A. Walker, K. Roggensack, L. C. Patino, et al., “The Water and Trace Element Contents of Melt Inclusions across An Active Subduction Zone,” Contrib. Mineral. Petrol. 146, 62–77 (2003).

    Article  Google Scholar 

  66. J. B. Witter, V. C. Kress, P. Delmelle, and J. Stix, “Volatile Degassing, Petrology, and Magma Dynamics of the Villarrica Lava Lake, Southern Chile,” J. Volcanol. Geotherm. Res 134, 303–337 (2004).

    Article  Google Scholar 

  67. J. B. Witter, V. C. Kress, and C. G. Newhall, “Volcan Popocatepetl, Mexico. Petrology, Magma Mixing, and Immediate Sources of Volatiles for the 1994 — Present Eruption,” J. Petrol. 46, 2337–2366 (2005).

    Article  Google Scholar 

  68. R. K. Workman and S. R. Hart, “Major and Trace Element Composition of the Depleted MORB Mantle (DMM),” Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article  Google Scholar 

  69. X. L. Xiong, J. Adam, and T. H. Green, “Rutile Stability and Rutile/Melt HFSE Partitioning During Partial Melting of Hydrous Basalt: Implications for TTG Genesis,” Chem. Geol. 218, 339–359 (2005).

    Article  Google Scholar 

  70. V. V. Yarmolyuk, V. I. Kovalenko, and V. B. Naumov, “Geodynamics, Flows of Volatile Components, and Their Exchange between the Mantle and the Earth’s Upper Shells,” Geotektonika, No. 1, 45–63 (2005) [Geotectonics 39, 39–55 (2005)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kovalenko.

Additional information

Original Russian Text © V.I. Kovalenko, V.B. Naumov, A.V. Girnis, V.A. Dorofeeva, V.V. Yarmolyuk, 2010, published in Petrologiya, 2010, Vol. 18, No. 1, pp. 3–28.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalenko, V.I., Naumov, V.B., Girnis, A.V. et al. Average composition of basic magmas and mantle sources of island arcs and active continental margins estimated from the data on melt inclusions and quenched glasses of rocks. Petrology 18, 1–26 (2010). https://doi.org/10.1134/S0869591110010017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591110010017

Keywords

Navigation