Skip to main content
Log in

Direct numerical simulation of transition to turbulence in a supersonic boundary layer

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

Based on full unsteady compressible Navier–Stokes equations a direct numerical simulation of the linear and nonlinear stages of the laminar-turbulent transition in boundary layer of a flate plate at the freestream Mach number M = 2 is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Mack, Boundary-layer stability theory, Doc. 90-277-REV-A (NASA CR 131501), 1969.

    Google Scholar 

  2. S.A. Gaponov and A.A. Maslov, Development of Disturbances in Compressible Flows, Nauka, Novosibirsk, 1980.

    Google Scholar 

  3. J. Laufer and T. Vrebalovich, Stability and transition of a supersonic laminar boundary layer on an insulated plate, J. Fluid Mech., 1960, Vol. 9, P. 257–299.

    Article  ADS  MATH  Google Scholar 

  4. A.D. Kosinov, A.A. Maslov, and S.G. Shevelkov, Experiments on the stability of supersonic laminar boundary layers, J. Fluid Mech., 1990, Vol. 219, P. 621–633.

    Article  ADS  Google Scholar 

  5. A.D. Kosinov, N.V. Semionov, S.G. Shevelkov, and O.I. Zinin, Experiments on instability of supersonic boundary layers, in: Nonlinear Instability of Nonparallel Flows. Springer, Berlin, Heidelberg, 1994, P. 196–205.

    Chapter  Google Scholar 

  6. Yu.G. Ermolaev, A.D. Kosinov, and N.V. Semionov, Features of the weakly nonlinear interaction of instability waves in supersonic boundary layer, Vestnik NGU. Ser. Fizika, 2008, Vol. 3, No. 3, P. 3–13.

    Google Scholar 

  7. N.D. Sandham and N.A. Adams, Numerical simulation of boundary-layer transition at Mach two, Appl. Sci. Research, 1993, Vol. 51, P. 371–375.

    Article  Google Scholar 

  8. N.D. Sandham, N.A. Adams, and L. Kleiser, Direct simulation of breakdown to turbulence following oblique instability waves in a supersonic boundary layer, Appl. Sci. Research, 1995, Vol. 54, P. 223–234.

    Article  ADS  MATH  Google Scholar 

  9. C.S.J. Mayer, S. Wernz, H.F. Fasel, Numerical investigation of the nonlinear transition regime in a Mach 2 boundary layer, J. Fluid Mech., 2011, Vol. 668, P. 113–149.

    Article  ADS  MATH  Google Scholar 

  10. C.S.J. Mayer, D.A. von Terzi, and H.F. Fasel, Direct numerical simulation of investigation of complete transition to turbulence via oblique breakdown at Mach 3, J. Fluid Mech., 2011, Vol. 674, P. 5–42.

    Article  ADS  MATH  Google Scholar 

  11. I.V. Egorov, V.G. Sudakov, and A.V. Fedorov, Numerical modeling of perturbation propagation in a supersonic boundary layer, Fluid Dyn., 2004, Vol. 39, No. 6, P. 874–884.

    Article  ADS  MATH  Google Scholar 

  12. I.V. Egorov, V.G. Sudakov, and A.V. Fedorov, Numerical modeling of the receptivity of a supersonic boundary layer to acoustic disturbances, Fluid Dyn., 2006, Vol. 41, No. 1, P. 37–48.

    Article  ADS  MATH  Google Scholar 

  13. I.V. Egorov, A.V. Fedorov, and V.G. Soudakov, Receptivity of a hypersonic boundary layer over a flat plate with a porous coating, J. Fluid Mech., 2008, Vol. 601, P. 165–187.

    ADS  MATH  MathSciNet  Google Scholar 

  14. A. Thumm, W. Wolz, and H. Fasel, Numerical simulation of spatially growing three-dimensional disturbance waves in compressible boundary layers, in: Laminar-Turbulent Transition, Springer, Berlin, Heidelberg, 1993, P. 303–308.

    Google Scholar 

  15. C.S.J. Mayer, S. Wernz, and H.F. Fasel, Investigation of oblique breakdown in a supersonic boundary layer, AIAA Paper, 2007, No. 2007–0940.

    Google Scholar 

  16. G.S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 1996, Vol. 26, P. 202–228.

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Hairer, S.P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff Problems, Springer, Berlin, 1987.

    Google Scholar 

  18. A.N. Kudryavtsev, T.V. Poplavskaya, and D.V. Khotyanovskii, Application of higher-order schemes at the simulation of unsteady supersonic flows, Matem. Modelirovanie, 2007, Vol. 19, No. 7, P. 39–55.

    MATH  MathSciNet  Google Scholar 

  19. N.A. Adams, Direct numerical simulation of turbulent compression ramp flow, Theor. Comp. Fluid Dyn., 1998, Vol. 12, P. 109–129.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Khotyanovsky.

Additional information

The work was financially supported by the Russian National Foundation (Grant No. 14-11-00490).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryavtsev, A.N., Khotyanovsky, D.V. Direct numerical simulation of transition to turbulence in a supersonic boundary layer. Thermophys. Aeromech. 22, 559–568 (2015). https://doi.org/10.1134/S0869864315050042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864315050042

Keywords

Navigation