Skip to main content
Log in

Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In a rectangle, the Dirichlet problem for a system of two singularly perturbed elliptic reaction-diffusion equations is considered. The higher order derivatives of the ith equation are multiplied by the perturbation parameter ɛ 2 i (i = 1, 2). The parameters ɛi take arbitrary values in the half-open interval (0, 1]. When the vector parameter ɛ = (ɛ1, ɛ2) vanishes, the system of elliptic equations degenerates into a system of algebraic equations. When the components ɛ1 and (or) ɛ2 tend to zero, a double boundary layer with the characteristic width ɛ1 and ɛ2 appears in the vicinity of the boundary. Using the grid refinement technique and the classical finite difference approximations of the boundary value problem, special difference schemes that converge ɛ-uniformly at the rate of O(N −2ln2 N) are constructed, where N = min N s, N s + 1 is the number of mesh points on the axis x s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Marchuk, Methods of Numerical Mathematics (Nauka, Moscow, 1989; Springer, New York, 1982).

    MATH  Google Scholar 

  2. A. A. Samarskii, Theory of Finite Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).

    Google Scholar 

  3. N. S. Bakhvalov, “On the Optimization of Methods for Solving Boundary Value Problems in the Presence of a Boundary Layer,” Zh. Vychisl. Mat. Mat. Fiz. 9, 841–859 (1969).

    MATH  Google Scholar 

  4. A. M. Il’in, “Differencing Scheme for a Differential Equation with a Small Parameter Affecting the Highest Derivative,” Mat. Zametki 6(2), 237–248 (1969) [Math. Notes 6, 596–602 (1969)].

    MATH  MathSciNet  Google Scholar 

  5. E. P. Doolan, J. J. H. Miller, and W. H. A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers (Boole, Dublin, 1980; Mir, Moscow, 1983).

    MATH  Google Scholar 

  6. G. I. Shishkin, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1992) [in Russian].

    Google Scholar 

  7. J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems (World Sci., Singapore, 1996).

    MATH  Google Scholar 

  8. H.-G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems (Springer, Berlin, 1996).

    MATH  Google Scholar 

  9. P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Robust Computational Techniques for Boundary Layers (Chapman & Hall/CRC Press, Boca Raton, Boca Raton, FL, 2000).

    MATH  Google Scholar 

  10. G. I. Shishkin, “A Difference Scheme for a Singularly Perturbed Parabolic Equation with a Discontinuous Boundary Condition,” Zh. Vychisl. Mat. Mat. Fiz. 28, 1649–1662 (1988).

    MATH  MathSciNet  Google Scholar 

  11. J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, “On the Use of Fitted Operator Methods for Singularly Perturbed Partial Differential Equations,” in Advanced Math.: Computations and Applications, Proc. Int. Conf. AMCA-95, Novosibirsk (NCC, Novosibirsk, 1995), pp. 518–531.

    Google Scholar 

  12. P. A. Farrell, J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, “On the Non-Existence of ε-Uniform Finite Difference Methods on Uniform Meshes for Semilinear Two-Point Boundary Value Problems,” Math. Comput. 67(222), 603–617 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  13. Kh. Z. Brainina and E. Ya. Neiman, Hard Alloy Reactions in Electroanalytical Chemistry (Khimiya, Moscow, 1982) [in Russian].

    Google Scholar 

  14. O. A. Ladyzhenskaya and N. A. Ural’tseva, Linear and Quasilinear Elliptic Equations (Nauka, Moscow, 1973; Academic, New York, 1968).

    Google Scholar 

  15. E. A. Volkov, “On Differential Properties of Solutions to Boundary Value Problems for the Laplace and Poisson Equations on a Rectangle,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 77, 89–112 (1965).

    MATH  Google Scholar 

  16. G. I. Marchuk and V. V. Shaidurov, Improving the Accuracy of Finite Difference Schemes (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  17. G. I. Shishkin, “Grid Approximations of Singularly Perturbed Elliptic Equations in Domain with Characteristic Bounds,” Soviet J. Numer. Analys. Math. Modelling 5(4), 327–343 (1990).

    MATH  MathSciNet  Google Scholar 

  18. G. I. Shishkin, “Grid Approximation of Singularly Perturbed Boundary Value Problems for Systems of Elliptic and Parabolic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 35, 542–564 (1995).

    MathSciNet  Google Scholar 

  19. G. I. Shishkin, “Approximation of Systems of Elliptic Convection-Diffusion Equations with Parabolic Boundary Layers,” Zh. Vychisl. Mat. Mat. Fiz. 40, 1648–1662 (2000) [Comput. Math. Math. Phys. 40, 1582–1595 (2000)].

    MathSciNet  Google Scholar 

  20. G. I. Shishkin, “Grid Approximation of Singularly Perturbed Systems of Elliptic and Parabolic Equations with Convective Terms,” Differ. Uravn. 34, 1686–1696 (1998).

    MathSciNet  Google Scholar 

  21. G. I. Shishkin, “Grid Approximation of a Singularly Perturbed Elliptic Equation with Convective Terms in the Presence of Various Boundary Layers,” Zh. Vychisl. Mat. Mat. Fiz. 45, 110–125 (2005) [Comput. Math. Math. Phys. 45, 104–119 (2005)].

    MATH  MathSciNet  Google Scholar 

  22. T. Lin and N. Madden, “Accurate Solution of a System of Coupled Singularly Perturbed Reaction-Diffusion Equations,” Computing 73, 121–133 (2004).

    MathSciNet  Google Scholar 

  23. N. Madden and M. Stynes, “A Uniformly Convergent Numerical Method for a Coupled System of Two Singularly Perturbed Linear Reaction-Diffusion Problems,” IMA J. Numer. Analys. 23, 627–644 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Matthews, E. O’Riordan, and G. I. Shishkin, “A Numerical Method for a System of Singularly Perturbed Reaction-Diffusion Equations,” J. Comput. Appl. Math. 145((1)), 151–166 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Matthews, J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, “A Parameter Robust Numerical Method for a System of Singularly Perturbed Ordinary Differential Equations,” in Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, Proc. Int. Workshop, 1998 (Nova Science, New York, 2000), pp. 219–224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.I. Shishkin, 2007, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2007, Vol. 47, No. 5, pp. 835–866.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shishkin, G.I. Approximation of systems of singularly perturbed elliptic reaction-diffusion equations with two parameters. Comput. Math. and Math. Phys. 47, 797–828 (2007). https://doi.org/10.1134/S0965542507050077

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542507050077

Keywords

Navigation