Skip to main content
Log in

Overview of some new results concerning the theory and applications of the Rayleigh special function

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The author’s previous work provided a detailed overview of the results concerning the theory and applications of the Rayleigh special function starting from its appearance in science until recent years. Its numerous applications in various areas of mathematics, physics, and other fields were described, and an extensive bibliography was presented. This work overviews the studies not covered in the previous one and addresses new results published in many monographs and journals. Additionally, results concerning the estimation of zeros of some special polynomials and functions closely related to the Rayleigh function are described. The overview embraces the issues addressed in the scientific literature up to the last years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. Kerimov, “The Rayleigh Function: Theory and Methods of Its Calculation,” Zh. Vychisl. Mat. Mat. Fiz. 39 1962–2006 (1999) [Comput. Math. Math. Phys. 39, 1883–1925 (1999)].

    MathSciNet  Google Scholar 

  2. J. W. Rayleigh (Strutt), “Note on the Numerical Calculus of the Roots of Fluctuating Functions,” Proc. London Math. Soc. 5, 112–194 (1874).

    Google Scholar 

  3. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Univ. Press, Cambridge, 1944; Inostrannaya Literatura, Moscow, 1949).

    MATH  Google Scholar 

  4. M. K. Kerimov, “Some Remarks on Works Concerning the Summation of Series with Inverse Powers of Zeros of First-Kind Bessel Functions,” Zh. Vychisl. Mat. Mat. Fiz. 47, 21–23 (2007) [Comput. Math. Math. Phys. 47, 180–182 (2007)].

    Google Scholar 

  5. P. L. Kapitsa, “Heat Conduction and Diffusion in a Liquid with Periodic Flow: I. Determination of the Wave Transport Coefficient in a Pipe, Slit, and Cannel,” Zh. Eksp. Teor. Fiz. 21, 964–978 (1951).

    Google Scholar 

  6. P. L. Kapitsa, “Computation of Negative Even Power Sums of the Zeros of Bessel Functions,” Dokl. Akad. Nauk SSSR, No. 2, 561–564 (1951).

  7. N. N. Meiman, “On Recurrence Formulas for Power Sums of the Zeros of Bessel Functions,” Dokl. Akad. Nauk SSSR 108, 190–193 (1956).

    MathSciNet  Google Scholar 

  8. C. C. Grossjean, “On Orthogonality Property of the Lommel Polynomials and Twofold Infinity of Relations between Rayleigh’s σ-Sums,” J. Comput. Appl. Math. 10, 355–382 (1984).

    Article  MathSciNet  Google Scholar 

  9. G. Szegö, Orthogonal Polynomials (Am. Math. Soc., Providence. R.I., 1975; Fizmatlit, Moscow, 1962).

    MATH  Google Scholar 

  10. V. S. Vladimirov, Generalized Functions in Mathematical Physics (Mir, Moscow, 1979; Nauka, Moscow, 1979).

    Google Scholar 

  11. H. M. Schwartz, “A Class of Continued Fractions,” Duke Math. J. 6, 48–65 (1940).

    Article  MathSciNet  Google Scholar 

  12. O. Perron, Die Lehre von den Kettenbruchen. Zweite Auflage (Teubner-Verlag, Leipzig, 1929).

    Google Scholar 

  13. J. Shohat, Theorie Generale des Polynomes Orthogonaux de Tchebichef (Gauthier-Villars, Paris, 1934).

    Google Scholar 

  14. D. Dickinson, “On Lommel and Bessel Polynomials,” Proc. Am. Math. Soc. 5, 946–956 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Hahn, “Uber Orthogonal Polynome mit drei Parameter,” Deutsche Math. 5, 273–278 (1940).

    MathSciNet  Google Scholar 

  16. I. M. Sheffer, “Note on Functionally-Orthogonal Polynomials,” Töhoku Math. J. 33, 3–11 (1930).

    MATH  Google Scholar 

  17. E. S. Titchmarsh, The Theory of Functions (Oxford Univ. Press, London, 1939; Fizmatlit, Moscow, 1980).

    MATH  Google Scholar 

  18. H. L. Krall and O. Frink, “A New Class of Orthogonal Polynomials: The Bessel Polynomials,” Trans. Am. Math. Soc. 65(1), 100–115 (1949).

    Article  MathSciNet  Google Scholar 

  19. J. Favard, “Sur les polynomes de Tchebicheff,” C.R. Acad. Sci. Paris 200, 2052–2053 (1935).

    Google Scholar 

  20. D. J. Dickinson, H. O. Pollak, and G. H. Wannier, “On a Class of Polynomials Orthogonal over a Denumerable Set,” Pacific J. Math. 6, 239–247 (1956).

    MATH  MathSciNet  Google Scholar 

  21. J. L. Goldberg, “Polynomials Orthogonal over a Denumerable Set,” Pacific J. Math. 15, 1171–1186 (1965).

    MATH  MathSciNet  Google Scholar 

  22. A. Hurwitz, “Über die Nullstellen der Besselschen Funktionen,” Math. Ann. 33, 246–266 (1889).

    Article  Google Scholar 

  23. M. E. Muldoon and A. Raza, “Convolution Formulas for Functions of Rayleigh Type,” J. Phys. A: Math. Gen. 31, 9327–9330 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  24. A. McD. Mercer, “The Zeros of az 2 Jv + bzJv + cJ v(z) as Function of Order,” Int. J. Math. Math. Sci. 15, 319–322 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Zygmund, “Two Notes on the Summability of Infinite Series,” Colloq. Math. 1, 225–229 (1948).

    MATH  MathSciNet  Google Scholar 

  26. L. Lorch, “The Limits of Indetermination for Riemann Summation in Terms of Bessel Functions,” Colloq. Math. 15, 313–318 (1966).

    MATH  MathSciNet  Google Scholar 

  27. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Bateman Manuscript Project (McGraw-Hill, New York, 1953; Nauka, Moscow, 1966), Vol. 2.

    Google Scholar 

  28. S. Minakshisundaram, “A New Summation Process,” Math. Student 11, 21–27 (1943).

    MATH  MathSciNet  Google Scholar 

  29. N. Kishore, “Congruence Properties of the Rayleigh Functions and Polynomials,” Duke Math. J. 35, 557–562 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  30. N. Liron, “Some Infinite Sums,” SIAM J. Math. Anal. 2, 105–112 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  31. K. Knopp, Theory and Application of Infinite Series (Blackie, London, 1954).

    Google Scholar 

  32. L. Carlitz, “Recurrences for the Rayleigh Functions,” Duke Math. J. 34, 581–590 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  33. N. Kishore, “The Rayleigh Function,” Proc. Am. Math. Soc. 14, 527–533 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  34. N. Kishore, “A Class of Formulas for the Rayleigh Function,” Duke Math. J. 34, 573–579 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  35. N. Liron, “A Recurrence Concerning Rayleigh Functions,” SIAM J. Math. Anal. 2, 496–499 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  36. N. Liron, “Sums of Roots for a Class of Transcendental Equations and Bessel Functions of Order One-Half,” Math. Comput. 25, 769–781 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  37. R. P. Boas, Entire Functions (Academic, New York, 1954).

    MATH  Google Scholar 

  38. D. Gupta and M. E. Muldoon, “Riccati Equations and Convolution Formulae for Functions of Rayleigh Type,” J. Phys. Ser. A: Math. Gen. 33, 1360–1368 (2000).

    MathSciNet  Google Scholar 

  39. M. E. H. Ismail and M. E. Mildoon, “Bounds for the Small and Purely Imaginary Zeros of Bessel and Related Functions,” Methods Appl. Anal. 2(1), 1–21 (1995).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Kerimov.

Additional information

Dedicated to the memory of Academician A.A. Samarskii, my teacher and friend.

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerimov, M.K. Overview of some new results concerning the theory and applications of the Rayleigh special function. Comput. Math. and Math. Phys. 48, 1454–1507 (2008). https://doi.org/10.1134/S0965542508090029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542508090029

Keywords

Navigation