Skip to main content
Log in

Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A high-order accurate method for analyzing two-dimensional rarefied gas flows is proposed on the basis of a nonstationary kinetic equation in arbitrarily shaped regions. The basic idea behind the method is the use of hybrid unstructured meshes in physical space. Special attention is given to the performance of the method in a wide range of Knudsen numbers and to accurate approximations of boundary conditions. Examples calculations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Frolova and F. G. Cheremisin, “Rarefied Gas Flow around Cylindrical Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 38, 2096–2102 (1998) [Comput. Math. Math. Phys. 38, 2012–2018 (1998)].

    MathSciNet  Google Scholar 

  2. Z.-H. Li and H.-X. Zhang, “Study on Gas Kinetic Unified Algorithm for Flows from Rarefied Transition to Continuum,” J. Comput. Phys. 193, 708–738 (2004).

    Article  MATH  Google Scholar 

  3. I. N. Larina and V. A. Rykov, “Study of the Rarefied Gas Flow past a Circular Cylinder at Steady-State and Self-Oscillating Regimes,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 166–175 (2006).

  4. V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, et al., “Unified Solver for Rarefied and Continuum Flows with Adaptive Mesh and Algorithm Refinement,” J. Comput. Phys. 223, 589–608 (2007).

    Article  MATH  Google Scholar 

  5. E. M. Shakhov, “Generalization of the Krook Relaxation Kinetic Equation,” Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza, No. 5, 142–145 (1968).

  6. E. M. Shakhov, The method for Analyzing Rarefied Gas Flows (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  7. C. K. Chu, “Kinetic-Theoretic Description of the Formation of a Shock Wave,” Phys. Fluids 8(1), 12–22 (1965).

    Article  Google Scholar 

  8. S. K. Godunov, “Difference Method for Computing Discontinuous Solutions of Fluid Dynamics Equations,” Mat. Sb. 47(89), 271–306 (1959).

    MathSciNet  Google Scholar 

  9. N. I. Tillyaeva, “Generalization of Modified Godunov Scheme to Arbitrary Irregular Meshes,” Uch. Zap. Tsentr. Aerogidrodin. Inst. 17(2), 18–26 (1986).

    Google Scholar 

  10. V. P. Kolgan, “The Principle of Derivative’s Minimal Values as Applied to the Construction of Finite-Difference Schemes for Computing Discontinuous Gas Flows,” Uch. Zap. Tsentr. Aerogidrodin. Inst. 3(6), 68–77 (1972).

    Google Scholar 

  11. V. P. Kolgan, “Numerical Method for Solving Three-Dimensional Gas Dynamics Problems and Flow Computations at Nonzero Angle of Attack,” Uch. Tsentr. Aerogidrodin. Inst. 6(2), 1–6 (1975).

    Google Scholar 

  12. J. J. W. van der Vegt and H. van der Ven, “Discontinuous Galerkin Finite Element Method with Anisotropic Local Mesh Refinement for Inviscid Compressible Flows,” J. Comput. Phys. 141, 46–77 (1998).

    Article  MATH  Google Scholar 

  13. M. Dumbser and M. Köser, “Arbitrary High Order Nonoscillatory Finite Volume Schemes on Unstructured Meshes for Linear Hyperbolic Systems,” J. Comput. Phys. 221, 693–723 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  14. T. J. Barth and P. O. Frederickson, “Higher Order Solution of the Euler Equations on Unstructured Meshes Using Quadratic Reconstruction,” AIAA Paper, No. 90-0013, 28th Aerospace Sciences Meeting, 1990.

  15. C. F. Ollivier-Gooch and M. van Altena, “A High-Order-Accurate Unstructured Mesh Finite-Volume Scheme for the Advection-Diffusion Equation,” J. Comput. Phys. 181, 729–752 (2002).

    Article  MATH  Google Scholar 

  16. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman and Hall/CRC, London, 2001).

    MATH  Google Scholar 

  17. V. A. Titarev and E. M. Shakhov, “Numerical Calculation of the Hypersonic Rarefied Gas Transverse Flow past a Cold Flat Plate,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 139–154 (2005).

  18. V. A. Titarev, “Conservative Numerical Methods for Model Kinetic Equations,” Comput. Fluids 36, 1446–1459 (2007).

    Article  MathSciNet  Google Scholar 

  19. V. A. Titarev and E. M. Shakhov, “Numerical Study of Intense Unsteady Evaporation from the Surface of a Sphere,” Zh. Vychisl. Mat. Mat. Fiz. 44, 1314–1328 (2004) [Comput. Math. Math. Phys. 44, 1245–1258 (2004)].

    MATH  MathSciNet  Google Scholar 

  20. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer-Verlag, Berlin, 1999).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Titarev.

Additional information

Original Russian Text © V.A. Titarev, 2009, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2009, Vol. 49, No. 7, pp. 1255–1270.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titarev, V.A. Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains. Comput. Math. and Math. Phys. 49, 1197–1211 (2009). https://doi.org/10.1134/S0965542509070112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542509070112

Key words

Navigation