Skip to main content
Log in

Explicit stabilized Runge-Kutta methods

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Explicit Runge-Kutta methods with the stability domains extended along the real axis are examined. For these methods, a simple and efficient procedure for calculating the stability polynomials is proposed. Three techniques for constructing methods with given stability polynomials are considered. Methods of the second and third orders are constructed, and their accuracy as applied to solving the Prothero-Robinson equation is examined. A comparison of the above methods on some test problems is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Lebedev, “How to Solve Stiff Systems of Differential Equations Using Explicit Methods,” in Vychislitel’nye Protsessy i Sistemy (Nauka, Moscow, 1991), No. 8, pp. 237–291 [in Russian].

    Google Scholar 

  2. V. I. Lebedev and A. A. Medovikov, “An Explicit Method of the Second Order of Accuracy for Stiff Systems of Ordinary Differential Equations,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 55–63 (1998).

  3. V. I. Lebedev, “Explicit Difference Schemes for Solving Stiff Problems with a Complex or Separable Spectrum,” Zh. Vychisl. Mat. Mat. Fiz. 40(12), 1801–1812 (2000) [Comput. Math. Math. Phys. 40, 1729–1740 (2000)].

    Google Scholar 

  4. V. I. Lebedev, Functional Analysis and Computational Mathematics (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  5. E. Hairer and G. Wanner, Solving Ordinary Differential Equations, Vol. 2: Stiff and Differential-Algebraic Problems (Springer, Berlin, 1987–1991; Mir, Moscow, 1999).

    Google Scholar 

  6. J. G. Verwer, “Explicit Runge-Kutta Methods for Parabolic Partial Differential Equations,” Appl. Numer. Math. 22(1–3), 359–379 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  7. B. P. Sommeijer, L. F. Shampine, and J. D. Verwer, “RKC: An Explicit Solver for Parabolic PDEs,” J. Comput. Appl. Math. 88, 315–326 (1997).

    Article  MathSciNet  Google Scholar 

  8. A. A. Medovikov, “Third Order Explicit Method for the Stiff Ordinary Differential Equations,” Lect. Notes Comput. Sci., Numerical Analysis and Its Applications 1196, 327–334 (Springer, 1997).

    MathSciNet  Google Scholar 

  9. A. A. Medovikov, “High Order Explicit Methods for Parabolic Equations,” BIT 38, 372–390 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Abdulle and A. A. Medovikov, “Second Order Chebyshev Methods Based on Orthogonal Polynomials,” Numer. Math. 90(1), 1–18 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Abdulle, “Fourth Order Chebyshev Methods with Recurrence Relation,” SIAM J. Sci. Comput. 23, 2041–2054 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Martin-Vaquero and B. Janssen, “Second-Order Stabilized Explicit Runge-Kutta Methods for Stiff Problems,” Comput. Phys. Communs. 180, 1802–1810 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Riha, “Optimal Stability Polynomials,” Computing 9, 37–43 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Abdulle, “On Roots and Error Constants of Optimal Stability Polynomials,” BIT 40, 177–182 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. B. Bogatyrev, “Efficient Solution of the Problem on the Best Stability Polynomial,” Mat. Sb. 196(7), 27–50 (2005).

    MathSciNet  Google Scholar 

  16. V. I. Lebedev and S. A. Finogenov, “Utilization of Ordered Chebyshev Parameters in Iterative Methods,” Zh. Vychisl. Mat. Mat. Fiz. 16, 895–907 (1976) [USSR Comput. Math. Math. Phys. 16 (4), 70–83 (1976)].

    MATH  MathSciNet  Google Scholar 

  17. A. Prothero and A. Robinson, “On the Stability and Accuracy of One-Step Methods for Solving Stiff Systems of Ordinary Differential Equations,” Math. Comput. 28(1), 145–162 (1974).

    Article  MathSciNet  Google Scholar 

  18. K. Dekker and J. G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations (North-Holland, Amsterdam, 1984; Mir, Moscow, 1988).

    MATH  Google Scholar 

  19. L. M. Skvortsov, “Increasing the Accuracy of Explicit Runge-Kutta Methods in Solving Moderately Stiff Problems,” Dokl. Akad. Nauk 378(5), 602–604 (2001) [Dokl. 63, 387–389 (2001)].

    MathSciNet  Google Scholar 

  20. L. M. Skvortsov, “Accuracy of Runge-Kutta Methods Applied to Stiff Problems,” Zh. Vychisl. Mat. Mat. Fiz. 43, 1374–1384 (2003) [Comput. Math. Math. Phys. 43, 1320–1330 (2003)].

    MATH  MathSciNet  Google Scholar 

  21. L. M. Skvortsov, “Explicit Runge-Kutta Methods for Moderately Stiff Problems,” Zh. Vychisl. Mat. Mat. Fiz. 45, 2017–2030 (2005) [Comput. Math. Math. Phys. 45, 1939–1951 (2005)].

    MATH  MathSciNet  Google Scholar 

  22. O. S. Kozlov, D. E. Kondakov, L. M. Skvortsov, et al., “The Program Package Modelling in Engineering Devices, http://model.exponenta.ru/mvtu/20050615.html.

  23. V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Computations (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Skvortsov.

Additional information

Original Russian Text © L.M. Skvortsov, 2011, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2011, Vol. 51, No. 7, pp. 1236–1250.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skvortsov, L.M. Explicit stabilized Runge-Kutta methods. Comput. Math. and Math. Phys. 51, 1153–1166 (2011). https://doi.org/10.1134/S0965542511070165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542511070165

Keywords

Navigation