Skip to main content
Log in

Nickel-tungsten sulfide aromatic hydrocarbon hydrogenation catalysts synthesized in situ in a hydrocarbon medium

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Nickel-tungsten sulfide nanocatalysts for the hydrogenation of aromatic hydrocarbons (HCs) have been prepared by the in situ decomposition of a nickel thiotungstate precursor in a HC feedstock using 1-butyl-1-methylpiperidinium nickel thiotungstate complex [BMPip]2Ni[WS4]2 as the precursor. The in situ synthesized particles have been characterized by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been shown that the resulting Ni-W-S particles are nanoplates associated in multilayer agglomerates; the average length of the Ni-W-S particles is 6 nm; the average number of layers in the multilayer packaging is three. The catalytic activity of the synthesized catalysts has been studied in the hydrogenation of model mixtures of mono- and bicyclic aromatic HCs and in the conversion of dibenzothiophene in a batch reactor at a temperature of 350°C and a hydrogen pressure of 5.0 MPa. It has been shown that the studied catalysts can be used for the hydrofining of light cycle oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Aliev, Oil Refining Catalysts and Processes (Moscow, 2010) [in Russian].

    Google Scholar 

  2. V. M. Kapustin and A. A. Gureev, Oil Refining Technology, part 2: Cracking Processes (KolosS, Moscow, 2008) [in Russian].

    Google Scholar 

  3. I. V. Babich and J. A. Moulijn, Fuel 82, 607 (2003).

    Article  CAS  Google Scholar 

  4. C. Song and X. Ma, Appl. Catal. B: Environ. 40, 207 (2003).

    Article  Google Scholar 

  5. A. N. Startsev, Sulfide Hydrotreating Catalysts: Synthesis, Structure, and Properties (Geo, Novosibirsk, 2007).

    Google Scholar 

  6. N. N. Tomina, A. A. Pimerzin, and I. K. Moiseev, Ross. Khim. Zh. 52(4), 41 (2008).

    CAS  Google Scholar 

  7. Nanocatalysis, Ed. by U. Heiz and U. Landman (Springer, Berlin, 2007), 2nd Ed.

    Google Scholar 

  8. M. Zdrazil, Catal. Today 3, 269 (1988).

    Article  CAS  Google Scholar 

  9. G. Alonso, M. del Valle, J. Cruz, et al., Catal. Lett. 52, 55 (1998).

    Article  CAS  Google Scholar 

  10. F. Pedraza and S. Fuentes, Catal. Lett. 65, 107 (2000).

    Article  CAS  Google Scholar 

  11. G. Alonso, M. del Valle, J. Cruz, et al., Catal. Today 43, 117 (1998).

    Article  CAS  Google Scholar 

  12. G. Alonso, V. Petranovskii, M. del Valle, et al., Appl. Catal. A: Gen. 197, 87 (2000).

    Article  CAS  Google Scholar 

  13. K. Wilkinson, M. D. Merchan, and P. T. Vasudevan, J. Catal. 171, 325 (1997).

    Article  CAS  Google Scholar 

  14. W. McDonald, G. D. Friesen, L. D. Rosenhein, and W. E. Newton, Inorg. Chim. Acta 72, 205 (1983).

    Article  CAS  Google Scholar 

  15. C. J. Crossland, I. R. Evans, and J. S. O. Evans, Dalton Trans., 1597 (2008).

    Google Scholar 

  16. Y. G. Hur, M-S. Kim, D.-W. Lee, et al., Fuel 137, 237 (2014).

    Article  CAS  Google Scholar 

  17. Z. Le, P. Afanasiev, D. Li, et al., Catal. Today 130, 24 (2008).

    Article  CAS  Google Scholar 

  18. B. S. Zhang, Y. J. Yi, W. Zhang, et al., Mater. Charact. 62, 684 (2011).

    Article  CAS  Google Scholar 

  19. K. Tayeb, C. Lamonier, C. Lancelot, et al., Catal. Today 150, 207 (2010).

    Article  Google Scholar 

  20. D. Zue, M. Vrinat, H. Nie, et al., Catal. Today 93–95, 751 (2004).

    Article  Google Scholar 

  21. A. Stanislaus and B. Cooper, Catal. Rev. Sci. Eng. 36, 75 (1994).

    Article  CAS  Google Scholar 

  22. A. W. Weitkamp, Adv. Catal. 18, 1 (1968).

    Article  CAS  Google Scholar 

  23. B. Demirel and W. H. Wiser, Fuel Process. Technol. 53, 157 (1997).

    Article  CAS  Google Scholar 

  24. B. C. Gates and H. Topsøe, Polyhedron 16, 3213 (1997).

    Article  CAS  Google Scholar 

  25. L. Ding, Y. Zheng, H. Yang, et al., Appl. Catal. A 353, 17 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Sizova.

Additional information

Original Russian Text © I.A. Sizova, S.I. Serdyukov, A.L. Maksimov, 2015, published in Neftekhimiya, 2015, Vol. 55, No. 4, pp. 319–330.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizova, I.A., Serdyukov, S.I. & Maksimov, A.L. Nickel-tungsten sulfide aromatic hydrocarbon hydrogenation catalysts synthesized in situ in a hydrocarbon medium. Pet. Chem. 55, 470–480 (2015). https://doi.org/10.1134/S0965544115060110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544115060110

Keywords

Navigation