Skip to main content
Log in

Transition from two-to three-dimensional behavior in anisotropic polymer layers

  • Theory
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Two types of anisotropic polymer systems were studied in the spherical approximation used in the classical theory of ferromagnetism. These were a three-dimensional system composed of weakly interacting layers with isotropic interactions between chain segments in the layer planes and thin quasi-two-dimensional polymer films possessing intra-and interchain interaction anisotropy, whose behavior is close to that of two-dimensional systems. Laws that govern a change in the temperature T cr of phase transition from the long-range order state to a disordered state depending on the magnitude of anisotropy and the size of the layers were established. For systems of the former type in which interlayer interactions is weakened, T cr tends to zero, being inversely proportional to lng, where g is the ratio of the interaction constant between the layers to that of inplane interaction in a layer. For systems of the latter type, the transition temperature T cr → 0 according to the T cr ∼ √ɛ law, where ɛ is the parameter that characterizes the anisotropy of intra-and interchain interactions. The number of layers required for the systems to be considered three-dimensional was estimated. Regardless of the type of boundary conditions for finite systems, the number of layers increases with enhancement of interaction anisotropy (a decrease in g and ɛ) and an increase in the number of chains in the layers, especially for systems of the former type. Transverse orientational correlations of chain segments with respect to the arrangement of the layers decrease according to a power law, as in the case of infinite two-dimensional systems. There are fluctuations of three-dimensional long-range orientation order in the plane of the layers, the fluctuations are enhanced with an increase in the anisotropy of interactions in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Physics of Polymer Surfaces and Interfaces, Ed. by I. C. Sanchez and L. E. Fitzpatrick (Butterworth-Heinemann, Boston, 1992).

    Google Scholar 

  2. Polymer Surfaces, Interfaces and Thin Films, Ed. by A. Karim and S. Kumar (World Scientific, Singapore, 2000).

    Google Scholar 

  3. M. Mulder, Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht, 1991; Mir, Moscow, 1999).

    Google Scholar 

  4. C. Mischler, J. Baschnagel, S. Dasgupta, and K. Binder, Polymer 43, 467 (2002).

    Article  CAS  Google Scholar 

  5. F. Saulnier, E. Raphael, and P.-G. De Gennes, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 66, 061607 (2002).

  6. N. Chen, N. Maeda, M. Tirrell, and J. Israelachvili, Macromolecules 38, 3491 (2005).

    Article  CAS  Google Scholar 

  7. A. Baumgartner, J. Chem. Phys. 81, 484 (1984).

    Article  Google Scholar 

  8. D. P. Landau, Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1979; Mir, Moscow, 1982).

    Google Scholar 

  9. L. D. Landau and E. M. Lifshits, Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  10. Y. Okumoto, M. Kimura, T. Akahame, et al., in Proceedings of 19 International LC Conference, Edinburgh, 2002, p. 91.

  11. S. Magonov, N. Yerina, G. Ungar, et al., Macromolecules 36, 5637 (2003).

    Article  CAS  Google Scholar 

  12. Liquid Crystalline Order in Polymers, Ed. by A. Blumstein (Academic, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  13. Yu. E. Shalyganova, M. L. Kerber, and A. E. Chalykh, in Proceedings of IV All-Russia Conference “Structure and Dynamics of Molecular Systems” (Kazansk. Gos. Univ., Kazan, 1997), Vol. 1, p. 21.

    Google Scholar 

  14. N. A. Platé and V. P. Shibaev, Comb-Shaped Polymers and Liquid Crystals (Khimiya, Moscow, 1981; Plenum, New York, 1988).

    Google Scholar 

  15. G. M. Pavlov and A. E. Grishchenko, Polymer Science, Ser. B 47, 269 (2005) [Vysokomol. Soedin., Ser. B 47, 1882 (2005)].

    Google Scholar 

  16. S. Goloudina, V. Luchinin, V. Pasyuta, et al., in Proceedings of 5 International Symposium “Molecular Mobility and Order”, St. Petersburg, 2005, p. 152.

  17. Yu. G. Baklagina, I. S. Milevskaya, N. V. Epifanova, et al., Vysokomol. Soedin., Ser. A 18, 1235 (1976).

    CAS  Google Scholar 

  18. V. A. Zubkov, I. S. Milevskaya, and Yu. G. Baklagina, Vysokomol. Soedin., Ser. A 27, 1543 (1985).

    CAS  Google Scholar 

  19. Yu. Ya. Gotlib, A. A. Darinskii, A. V. Lyulin, and I. M. Neelov, Vysokomol. Soedin., Ser. A 32, 810 (1990).

    CAS  Google Scholar 

  20. A. Kolynsky, J. Skolnick, and R. Yaris, Macromolecules 19, 2550 (1986).

    Article  Google Scholar 

  21. G. Luckhurst, P. Simpson, and C. Zannoni, Liq. Cryst. 2, 2550 (1987).

    Google Scholar 

  22. A. V. Maksimov and Yu. Ya. Gotlib, Vysokomol. Soedin., Ser. A 30, 1411 (1988).

    CAS  Google Scholar 

  23. Yu. Ya. Gotlib and A. V. Maksimov, Vysokomol. Soedin., Ser. A 30, 1561 (1988).

    Google Scholar 

  24. Yu. Ya. Gotlib and A. V. Maksimov, Vysokomol. Soedin., Ser. A 32, 1455 (1990).

    CAS  Google Scholar 

  25. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982; Mir, Moscow, 1985).

    Google Scholar 

  26. A. V. Maksimov and G. M. Pavlov, Polymer Science, Ser. A 49, 828 (2007) [Vysokomol. Soedin., Ser. A 49, 1239 (2007)].

    Article  Google Scholar 

  27. A. V. Maksimov, Polymer Science, Ser. A 49, 599 (2007) [Vysokomol. Soedin., Ser. A 49, 891 (2007)].

    Article  Google Scholar 

  28. E. L. Nagaev, Fiz. Tverd. Tela (Leningrad) 25, 3270 (1985).

    Google Scholar 

  29. N. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

    Article  CAS  Google Scholar 

  30. B. K. Vainshtein, X-Ray Diffraction on Chain Molecules (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  31. A. V. Maksimov and O. G. Maksimova, Polymer Science, Ser. A 45, 859 (2003) [Vysokomol. Soedin., Ser. A 45, 1476 (2003)].

    Google Scholar 

  32. H. Skipin, S. V. Shilov, F. Kremer, et al., in Proceedings of 17 International LC Conference, Strasburg, 1998, p. 1, p. 333.

  33. V. A. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1970).

    Google Scholar 

  34. Yu. Ya. Gotlib, V. G. Baranov, and A. V. Maksimov, Vysokomol. Soedin., Ser. A 29, 2620 (1987).

    CAS  Google Scholar 

  35. Yu. Ya. Gotlib and A. V. Maksimov, Vysokomol. Soedin., Ser. B 29, 822 (1987).

    CAS  Google Scholar 

  36. A. Maradudin, E. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (New York, 1963; Mir, Moscow, 1965).

  37. R. V. Talroze and N. A. Platé, in Liquid Crystal Polymers, Ed. by N. A. Platé (Khimiya, Moscow, 1988; Plenum, New York, 1993).

    Google Scholar 

  38. S. A. Pikin, Structural Transitions in Liquid Crystals (Nauka, Moscow, 1981; Gordon and Breach, New York, 1991)..

    Google Scholar 

  39. Yu. Ya. Gotlib, V. G. Baranov, and A. V. Maksimov, Vysokomol. Soedin., Ser. A 27, 312 (1985).

    CAS  Google Scholar 

  40. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974; Mir, Moscow, 1977).

    Google Scholar 

  41. D. Y. Noh, J. D. Brock, J. O. Fossum, et al., Phys. Rev. B: Condens. Matter 43, 842 (1991).

    Article  CAS  Google Scholar 

  42. C. Y. Chao and T. C. Pan, Mol. Cryst. Liq. Cryst. 412, 1611 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Maksimov.

Additional information

Original Russian Text © A.V. Maksimov, 2008, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 3, pp. 518–530.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimov, A.V. Transition from two-to three-dimensional behavior in anisotropic polymer layers. Polym. Sci. Ser. A 50, 341–351 (2008). https://doi.org/10.1134/S0965545X08030139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X08030139

Keywords

Navigation