Skip to main content
Log in

Origin of the Plague: Prospects of Ecological-Molecular-Genetic Synthesis

  • Review
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

Plague, which is infamous for three devastating pandemics, remains to this day one of the most dangerous human diseases. Its pathogen, the microbe Yersinia pestis, is a priority agent in the arsenal of possible bacteriological weapons, which requires increased attention to the preventive development of systems of biological (bacteriological) security. Deep knowledge of the natural processes that caused the emergence of the causative agent of plague in nature might contribute to it. In the problem of the origin of Y. pestis, there are currently two alternative approaches, molecular-genetic (MG) and ecological. MG data led to the innovative idea of the saltational transformation of a clone of the ancestral psychrophilic saprozoobiont pseudotuberculosis microbe Y. pseudotuberculosis O:1b into a population of the plague pathogen Y. pestis by means of horizontal transfer of two plague-specific virulence plasmids pFra and pPst from the external environment or from other bacteria and inactivation/deletion of genes that lost their functions in a fundamentally new habitat, the vole (Microtinae) populations in Asia. The ecological scenario is based on the Darwinian idea of the adaptogenesis of the plague microbe with the rapid “quantum” formation of its properties in the marmot- flea (Marmota sibirica and Oropsylla silantiewi) parasitic system under the conditions of the Central Asia psychroarid climate at the turn of the Pleistocene and Holocene periods. Three important factors of quantum speciation of the plague microbe were identified: marmot heterothermy during hibernation, an oxidative burst of macrophages in the body of repeatedly awakening hibernating marmots, and stress-induced muta-genesis of the evolving microbe due to the oxidative burst of macrophages. This paper argues the principle of complementarity between the environmental and MG approaches. The prospect of solving the problem of quantum speciation of the causative agent of plague and the development of tools and methods for treating and preventing this disease is seen in the synthesis of the ecological and MG approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Suntsov and N. I. Suntsova, Plague: The Origin and Evolution of the Epizootic System (Ecological, Geographical, and Social Aspects) (KMK, Moscow, 2006) [in Russian].

    Google Scholar 

  2. G. Morelli, Y. Song, C. J. Mazzoni, et al., “Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity,” Nat. Genet. 42 (12), 1140–1143 (2010).

    Article  CAS  Google Scholar 

  3. F. Sebbanne, C. O. Jarrett, D. Long and B. J. Hinnebusch, “Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague,” Proc. Natl. Acad. Sci. U. S. A. 103 (14), 5526–5530 (2006).

    Article  CAS  Google Scholar 

  4. V. V. Suntsov, “Ecological aspects of the origin of Yersinia pestis, causative agent of the plague: Concept of intermediate environment,” Contemp. Probl. Ecol. 7 (1), 1–11 (2014).

    Article  Google Scholar 

  5. V. V. Suntsov, “Recent speciation of the plague microbe Yersinia pestis in the heterothermal (heteroimmune) environment marmot-flea (Marmota sibirica-Oropsylla silantiewi): Biocenotic preconditions and pread-aptations,” Biol. Bull. Rev. 7 (4), 299–311 (2017).

    Article  Google Scholar 

  6. A. Owen, B. Richards, E. J. Rhodes, et al., “Relict permafrost structures in the Gobi of Mongolia: Age and significance,” J. Quaternary Sci. 13 (6), 539–547 (1998).

    Article  Google Scholar 

  7. V. Grant, Organismic Evolution (Freeman and Co., San Francisco, 1977).

    Google Scholar 

  8. E. Mayr, Populations, Species and Evolution (Oxford Univ. Press, London, 1963).

    Book  Google Scholar 

  9. V. A. Bibikova and L. N. Klassovskii, Plague Transmission by Fleas (Meditsina, Moscow, 1974) [in Russian].

    Google Scholar 

  10. V. S. Vashchenok, Fleas (Siphonaptera) As Carriers of Human and Animal Diseases (Nauka, Leningrad, 1988) [in Russian].

    Google Scholar 

  11. B. J. Prendergast, D. A. Freeman, I. Zucker and R. J. Nelson, “Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 282 (4), 1054–1062 (2002).

    Article  Google Scholar 

  12. H. V. Carey, M. T. Andrews and S. I. Martin, “Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature,” Physiol. Rev. 83, 1153–1181 (2003).

    Article  CAS  Google Scholar 

  13. H. R. Bouma, H. V. Carey and F. G. M. Kroese, “Hibernation: The immune system at rest?,” J. Leukocyte Biol. 88, 619–624 (2010).

    Article  CAS  Google Scholar 

  14. J. M. Slauch, “How does the oxidative burst of macrophages kill bacteria? Still an open question,” Mol. Microbiol. 80 (3), 580–583 (2011).

    Article  CAS  Google Scholar 

  15. S. Ortmann and G. Heldmaier, “Regulation of body temperature and energy requirements of hibernating Alpine marmots (Marmota marmota),” Am. J. Physiol. Regul. Integr. Comp. Physiol. 278 (3), 698–704 (2000).

    Article  Google Scholar 

  16. F. V. Breukelen and S. L. Martin, “Translational nitiation is uncoupled from elongation at 18°C during mammalian hibernation,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 281 (5), R1374–1379 (2001).

    Article  Google Scholar 

  17. T. N. Lee, B. M. Barnes and C. L. Buck, “Body temperature patterns during hibernation in a free-living Alaska marmot (Marmota broweri),” Ethol. Ecol. Evol. 21, 403–413 (2009).

    Article  Google Scholar 

  18. A. L. Orr, L. A. Lohsea, L. D. Kelly, and M. Hermts-Lima, “Physiological oxidative stress after arousal from hibernation in Arctic ground squirrel,” Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 153 (2), 213–221 (2009).

    Article  CAS  Google Scholar 

  19. J. L. Spinner, A. B. Carmody, C. O. Jarrett and B. J. Hinnebusch, “Role of Yersinia pestis toxin complex family proteins in resistance to phagocytosis by polymorphonuclear leucocytes,” Inf. Immun. 81 (11), 4041–4052 (2013).

    Article  CAS  Google Scholar 

  20. J. Cairns, J. Overbaugh and S. Miller, “The origin of mutants,” Nature, No. 335, 142–145 (1988).

    Article  CAS  Google Scholar 

  21. Stress-Induced Mutagenesis, Ed. by D. Mittelman (Springer-Verlag, New York, 2013).

  22. I. Bjedov, O. Tenaillon, B. Gérard, et al., “Stress-induced mutaganesis in bacteria,” Science 300 (5624), 1404–1409 (2003).

    Article  CAS  Google Scholar 

  23. M. Lukačišinova, S. Novak and T. Paixao, “Stress-induced mutagenesis: Stress diversity facilitates the persistence of mutator genes,” PLoS Comp. Biol. 13 (7), E1005609 (2017).

    Article  CAS  Google Scholar 

  24. O. Tenaillon, E. Denamur and I. Matic, “Evolutionary significance of stress-induced mutagenesis in bacteria,” Trends Microbiol. 12 (6), 264–270 (2004).

    Article  CAS  Google Scholar 

  25. P. L. Foster, “Stress-induced mutagenesis in bacteria,” Crit. Rev. Biochem. Mol. Biol. 42 (5), 373–397 (2007).

    Article  CAS  Google Scholar 

  26. I. Matic, “Stress-induced mutagenesis in bacteria,” in Stress-Induced Mutagenesis Ed. by D. Mittelman (Springer-Verlag, New York, 2013), pp. 1–20.

    Google Scholar 

  27. E. Koonin, The Logic of Chance. The Nature and Origin of Biological Evolution (FT Press Science, Upper Saddle River, N.J., 2012.)

    Google Scholar 

  28. J. M. Travis and E. R. Travis, “Mutator dynamics in fluctuating environments,” Proc. R. Soc. Lond. Biol. Sci. 269 (1491), 591–597 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Suntsov.

Additional information

Viktor Vasil’evich Suntsov, Doctor of Biological Sciences, is the Leading Researcher at the Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences.

Russian Text © The Author(s), 2019, published in Vestnik Rossiiskoi Akademii Nauk, 2019, Vol. 89, No. 3, pp. 260–269.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suntsov, V.V. Origin of the Plague: Prospects of Ecological-Molecular-Genetic Synthesis. Her. Russ. Acad. Sci. 89, 271–278 (2019). https://doi.org/10.1134/S1019331619010118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331619010118

Keywords

Navigation