Skip to main content
Log in

Physiological responses of tobacco plants (Nicotiana rustica) pretreated with ethanolamine to salt stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Plant exposure to stress results in the decomposition of their cell membrane phospholipids, and therefore it can elevate the level of EA (ethanolamine) in the cell, and this elevated level of EA induces an alarm response that activates cellular resistance and tolerance mechanisms. In the present study, in vitro cultured tobacco plants (Nicotiana rustica L.) were pretreated with ethanolamine (EA) before salt treatment. After 3 weeks of salt treatment (200 mM NaCl), the plants pretreated with exogenous EA showed the elevated levels of SOD, CAT and APX activity compared with unpretreated plants. Furthermore, total antioxidant capacity, fresh and dry weight and the content of photosynthetic pigments were also increased. In contrast, H2O2 content decreased under similar conditions. According to the results of this study, it can be suggested that EA pretreatment increased salt tolerance of tobacco plants at least partly by stimulation of antioxidative responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

EA:

ethanolamine

FRAP:

ferric reducing ability of plasma

NBT:

nitro blue tetrazolium

SOD:

superoxide dismutase

References

  1. Epstein, E., Norlyn, J., Rush, D., Kings, R., and Kelly, D., Saline culture of crops: a genetic approach, Science, 1980, vol. 210, pp. 399–404.

    Article  CAS  PubMed  Google Scholar 

  2. Ren, S., Weeda, S., Li, H., Whitehead, B., Guo, Y., Atalay, A., and Parry, J., Salt tolerance in soybean WF-7 is partially regulated by ABA and ROS signaling and involves withholding toxic Clions from aerial tissues, Plant Cell Rep., 2012, vol. 31, pp. 1527–1533.

    Article  CAS  PubMed  Google Scholar 

  3. Asada, K., The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 50, pp. 601–639.

    Article  CAS  PubMed  Google Scholar 

  4. Gogorcena, Y., Iturbe-Ormaetexe, I., Escuredo, P.R., and Becana, M., Antioxidant defenses against activated oxygen in pea nodules subjected to water stress, J. Plant Physiol., 1995, vol. 108, pp. 753–758.

    CAS  Google Scholar 

  5. Bergmann, H., Lippmann, B., Leinhos, V., Tiroke, S., and Machelett, B., Activation of stress resistance in plants and consequence for product quality, J. Appl. Bot., 1999, vol. 73, pp. 153–161.

    CAS  Google Scholar 

  6. Bowler, C., van Montagu, M., and Inze, D., Superoxide dismutase and stress tolerance, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992, vol. 43, pp. 83–116.

    Article  CAS  Google Scholar 

  7. Mascher, R., Lippmann, B., Holzinger, S., and Bergmann, H., Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants, Plant Sci., 2002, vol. 163, pp. 961–969.

    Article  CAS  Google Scholar 

  8. Fridovich, I., Superoxide radical: an endogenous toxicant, Annu. Rev. Pharmacol. Toxicol., 1983, vol. 23, pp. 239–257.

    Article  CAS  PubMed  Google Scholar 

  9. Mascher, R., Nagy, E., Lippmann, B., Hornelein, S., Fischer, S., Scheiding, W., Neagoe, A., and Bergmann, H., Improvement of tolerance to paraquat and drought in barley (Hordeum vulgare L.) by exogenous 2-aminoethanol: effects on superoxide dismutase activity and chloroplast ultra structure, Plant Sci., 2005, vol. 168, pp. 691–698.

    Article  CAS  Google Scholar 

  10. Bergmann, H., Machelett, B., and Leinhos, V., Effect of natural amino alcohols on the yield of essential amino acids and the amino acid pattern in stressed barley, Amino Acids, 1994, vol. 7, pp. 327–331.

    Article  CAS  PubMed  Google Scholar 

  11. Leinhos, V. and Bergmann, H., Effect of amino alcohol application, rhizobacteria and mycorrhiza inoculation on the growth, the content of protein and phenolics and protein pattern of drought stressed lettuce (Lactuca sativa L. ‘Amerikanischer Brauner’), J. Appl. Bot., 1995, vol. 69, pp. 153–156.

    CAS  Google Scholar 

  12. Bergmann, H., Rost, S., and Machelett, B., Improvement of drought tolerance and changes of glycine betaine or proline accumulation in Hordeum vulgare L., by choline and 2-aminoethanol treatments, J. Appl. Bot., 2002, vol. 76, pp. 87–95.

    CAS  Google Scholar 

  13. Eckert, H., Reissmann, P., and Bergmann, H., Metabolism of [14C]-monoethanolamine in Hordeum vulgare, Biochem. Physiol. Pflanzen., 1988, vol. 183, pp. 15–25.

    Article  CAS  Google Scholar 

  14. Lippmann, B., Leinhos, V., and Bergmann, H., Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops. I. Changes in root morphology and nutrient accumulation in maize (Zea mays L.) caused by inoculation with indole-3-acetic acid (IAA) producing Pseudomonas and Acinetobacter strains or IAA applied exogenously, J. Appl. Bot., 1995, vol. 69, pp. 31–36.

    CAS  Google Scholar 

  15. Rajaeian, S., Heidari, R., and Ehsanpour, A., Effect of 2-aminoethanol pretreatment on the antioxidant enzyme activity in Zea mays under oxidative stress, Russ. J. Plant Physiol., 2011, vol. 58, pp. 45–50.

    Article  CAS  Google Scholar 

  16. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco cultures, Physiol. Plant., 1962, vol. 159, pp. 473–479.

    Article  Google Scholar 

  17. Lichtenthaler, H. and Wellburn, A., Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, Biochem. Soc. Trans., 1983, vol. 11, pp. 591–592.

    CAS  Google Scholar 

  18. Benzie, F. and Strain, J., The ferric reducing ability of plasma (FARP) as a measure of antioxidant power: the FARP assay, Anal. Biochem., 1996, vol. 239, pp. 70–76.

    Article  CAS  PubMed  Google Scholar 

  19. Szöllösi, R. and Varga, I.Sz., Total antioxidant power in some species of Labiatae (Adaptation of FRAP method), Acta Biol. Szeged, 2002, vol. 46, pp. 124–127.

    Google Scholar 

  20. Loreto, F. and Velikova, V., Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes, Plant Physiol., 2001, vol. 127, pp. 1781–1787.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Nakano, Y. and Asada, A., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  22. Beauchamp, C. and Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, pp. 276–287.

    Article  CAS  PubMed  Google Scholar 

  23. Weretilnyk, E., Bednarek, S., McCue, K., Rhodes, D., and Hanson, A., Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons, Planta, 1989, vol. 178, pp. 342–352.

    Article  CAS  PubMed  Google Scholar 

  24. Leinhos, V., Tiroke, S., and Bergmann, H., Influence of osmotic stress and aminoalcohol treatment on protein content, protein patterns and growth of germinating barley, Angew. Bot., 1996, vol. 70, pp. 199–204.

    CAS  Google Scholar 

  25. Mascher, R., Fischer, S., Scheiding, W., Neagoe, A., and Bergmann, H., Exogenous 2-aminoethanol can diminish paraquat induced oxidative stress in barley (Hordeum vulgare L.), Plant Growth Regul., 2005, vol. 45, pp. 103–112.

    Article  CAS  Google Scholar 

  26. Asada, K., Ascorbate peroxidase — a hydrogen peroxide-scavenging enzyme in plants, Physiol. Plant., 1992, vol. 85, pp. 235–241.

    Article  CAS  Google Scholar 

  27. Willekens, H., Inze, D., van Montagu, M., and van Camp, W., Catalase in plants, Mol. Breed., 1995, vol. 1, pp. 207–228.

    Article  CAS  Google Scholar 

  28. Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Montagu, M., and Inze, D., Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants, EMBO J., 1997, vol. 16, pp. 4806–4816.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hernández, J.A., Jiménez, A., Mullineaux, P., and Sevilla, F., Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defences, Plant Cell Environ., 2000, vol. 23, pp. 853–862.

    Article  Google Scholar 

  30. Kogan, M., Kristoff, G., Benavides, M., and Tomaro, M., Effect of pretreatment with ethanolamine on the response of Helianthus annuus L. to salt stress, Plant Growth Regul., 2000, vol. 38, pp. 87–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ehsanpour.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajaeian, S.O., Ehsanpour, A.A. Physiological responses of tobacco plants (Nicotiana rustica) pretreated with ethanolamine to salt stress. Russ J Plant Physiol 62, 246–252 (2015). https://doi.org/10.1134/S1021443715020156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715020156

Keywords

Navigation