Skip to main content
Log in

Photosynthesis in the seeds of chloroembryophytes

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Depending on the presence or absence of chlorophylls in the embryo, angiosperms are divided into chloroembryophytes and leucoembryophytes. Synthesis of chlorophylls (Chl) in the chloroembryos starts in the globular stage, rises as the embryo is formed, and stops in the late phase of seed maturation. The seeds also contain carotenoids that participate in photosynthesis and act as ABA precursors. The chloroembryos contain photochemically active chloroplasts that contain all the main photosynthetic complexes at a necessary stoichiometric ratio. Dark reactions of photosynthesis in developing seeds are notable for the fact that the main source of carbon therein is sucrose arriving from the maternal plant. Therefore, function of chloroplasts mainly aims at production of NADPH and ATP that are spent on conversion of sucrose into acetyl-CoA and, subsequently, to fatty acids. The CO2 fixation system involving Rubisco and/or phosphoenolpyruvate carboxylase operates in the chloroembryos. In the course of photosynthesis, oxygen is released, which prevents hypoxia and maintains seed respiration. In late stages of ripening, the seeds enter the state of dormancy, which is associated with dehydration, disintegration of photosynthetic apparatus, Chl breakdown, and transformation of chloroplasts into plastids filled with reserve nutrient substances. At the same time, very often Chl are not destroyed completely and their residues are present in mature seeds of numerous plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Car:

carotenoids

Chl:

chlorophyll(s)

References

  1. Hofmeister, W., Neue Beiträge zur Kenntniss der Embryobildung der Phanerogamen. I. Dikotyledonen mit ursprünglich einzelligem, nur durch Zellteilung waschsen-dem Endosperm, Abhandl. Königl. Sächs. Ges. Wiss.., 1859, vol. 6, pp. 535–672.

    Google Scholar 

  2. Flahault, M.Ch., Sur la présence de la matiére verte dans les organes actuellement soustraits a l’influence de la lumiére, Bull. Soc. Bot. France., 1879, vol. 26, pp. 249–259.

    Article  Google Scholar 

  3. Yakovlev, M.S. and Zhukova, G.Ya., Pokrytosemennye rasteniya s zelenym i bestsvetnym zarodyshem (khloroi leikoembriofity) (Angiosperms with Green and Colorless Embryos: Chloroembryos and Leucoembryos of Land Plants), Leningrad: Nauka, 1973.

    Google Scholar 

  4. Yakovlev, M.S. and Zhukova, G.Y., Chlorophyll in embryos of angiosperm seeds: a review, Botaniska Notiser., 1980, vol. 133, pp. 323–326.

    CAS  Google Scholar 

  5. Periasamy, K. and Vivekanandan, M., Photosynthetic functions and induction of etiolation in chloroembryos of Dolichos lablab L., J. Plant Physiol.., 1986, vol. 123, pp. 395–399.

    Article  Google Scholar 

  6. Puthur, J.T., Shackira, A.M., Saradhi, P.P., and Bartels, D., Chloroembryos: a unique photosynthesis system, J. Plant Physiol., 2013, vol. 170, pp. 1131–1138.

  7. Puthur, J.T. and Saradhi, P.P., Developing embryos of Sesbania sesban have unique potential to photosynthesize under high osmotic environment, J. Plant Physiol., 2004, vol. 161, pp. 1107–1118.

    Article  PubMed  CAS  Google Scholar 

  8. Ruuska, S.A., Schwender, J., and Ohlrogge, J.B., The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes, Plant Physiol., 2004, vol. 136, pp. 2700–2709.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Lubimenko, W., Etude spectroscopique des pigments verts des graines mures, C. R. Acad. Sci. (Paris)., 1906, vol. 38560, pp. 1–4.

  10. Monteverde, N.A. and Lyubimenko, V.N., Green pigment in the inner seed coat of Cucurbitaceae related to chlorophyll, Izv. Bot. Sada., 1909, vol. 9, pp. 2–3.

    Google Scholar 

  11. Toyoda, K., On the chlorophyll in some angiospermous seeds, Bot. Mag. (Tokyo)., 1959, vol. 72, pp. 159–168.

    Article  Google Scholar 

  12. Godnev, T.N. and Akulovich, N.K., Changes in the spectral properties of green pigments in the inner seed coats of pumpkin during maturing, Byull. Inst. Biologii ANBSSR., 1960, no. 5, pp. 3–5.

    Google Scholar 

  13. Zhukova, G.Ya., Qualitative composition of the plastid pigment complex in green embryos of angiosperms, Bot. Zh., 1967, vol. 52, pp. 1085–1096.

    CAS  Google Scholar 

  14. Pinfield, N.J., Stobart, A.K., Crawford, R.M., and Beckett, A., Carbon assimilation by sycamore cotyledons during early seedling development, J. Exp. Bot., 1973, vol. 24, pp. 1203–1207.

    Article  Google Scholar 

  15. Smolikova, G.N., Laman, N.A., and Boriskevich, O.V., Role of chlorophylls and carotenoids in seed tolerance to abiotic stressors, Russ. J. Plant Physiol., 2011, vol. 58, pp. 965–973.

    Article  CAS  Google Scholar 

  16. Periasamy, K. and Vivekanandan, M., Photosynthesis in the chloroembryo of Cyamopsis tetrago-naloba Tanu, Ann. Bot., 1981, vol. 47, pp. 793–797.

    CAS  Google Scholar 

  17. Saito, G.Y., Chang, Y.C., Walling, L.L., and Thompson, W.W., A correlation in plastid development and cytoplasmic ultrastructure with nuclear gene expression during seed ripening in soybean, New Phytol., 1989, vol. 113, pp. 459–469.

    Article  CAS  Google Scholar 

  18. Eastmond, P., Kolacna, L., and Rawsthorne, S., Photosynthesis by developing embryos of oilseed rape (Brassica napus L.), J. Exp. Bot.., 1996, vol. 47, pp. 1763–1769.

    Article  CAS  Google Scholar 

  19. Porra, R.J., The checkered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b, Photosynth. Res., 2002, vol. 73, pp. 149–156.

    Article  PubMed  CAS  Google Scholar 

  20. Willows, R.D., Chlorophylls, in Plant Pigments and Their Manipulation, Davies, K.M., Ed., Boca Raton, FL: CRC Press, 2004, pp. 23–56.

    Google Scholar 

  21. Ward, K., Scarth, R., Daun, J.K., and Thorsteinson, C.T., Characterization of chlorophyll pigments in ripening canola seed (Brassica napus), J. Am. Oil Chem. Soc., 1994, vol. 71, pp. 1327–1331.

    Article  CAS  Google Scholar 

  22. Averina, N.G. and Yaronskaya, E.B., Biosintez tetrapirrolov (Tetrapirrol Biosynthesis), Minsk: Belorusskaya Nauka, 2012.

    Google Scholar 

  23. Brzezowski, P. and Grimm, B., Chlorophyll metabolism, in Encyclopedia of Life Sciences, Chichester: Wiley, 2013. doi 10.1002/9780470015902a0020084pub2

    Google Scholar 

  24. Nomata, J., Kondo, T., Mizoguchi, T., Tamiaki, H., Itoh, Sh., and Fujita, Y., Dark-operative protochlorophyllide oxidoreductase generates substrate radicals by an iron-sulphur cluster in bacteriochlorophyll biosynthesis, Sci. Rep., 2014, vol. 4, art. 5455.

  25. Fujita, Y., Protochlorophyllide reduction: a key step in the greening of plants, Plant Cell Physiol., 1996, vol. 37, pp. 411–421.

    Article  PubMed  CAS  Google Scholar 

  26. Rudiger, W., The last steps of chlorophyll biosynthesis, in The Porphyrin Handbook II, Kadish, K.M., Smith, K., and Guilard, R., Eds., San Diego, USA: Academic., 2003, vol. 12, pp. 71–108.

    Article  Google Scholar 

  27. Chekunova, E.M., The genetics of chlorophyll biosynthesis: light-independent and light-dependent pathways, Ecol. Genet., 2010, vol. 8, no. 3, pp. 38–51.

    CAS  Google Scholar 

  28. Armstrong, G.A., Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms, J. Photochem. Photobiol., B., 1998, vol. 43, pp. 87–100.

    Article  CAS  Google Scholar 

  29. Fujita, Y. and Bauer, C., The light-independent protochlorophyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark, in The Porphyrin Handbook II, Kadish, K.M. Smith, K., and Guilard, R., Eds., San Diego, USA: Academic., 2003, vol. 12, pp. 109–156.

    Article  Google Scholar 

  30. Yamazaki, S., Nomata, J., and Fujita, Y., Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana, Plant Physiol., 2006, vol. 142, pp. 911–922.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Schoefs, B. and Franck, F., Chlorophyll synthesis in dark-grown pine primary needles, Plant Physiol., 1998, vol. 118, pp. 1159–1168.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Danovich, K.N., Structure and formation of seed, Fiziologiya semyan (Seed Physiology), Prokof’ev, A.A., Ed., Moscow: Nauka, 1982, pp. 5–47.

  33. Rochaix, J.-D., Chlamydomonas as the photosynthetic yeast, Ann. Rev. Genet., 1995, vol. 29, pp. 209–230.

    Article  PubMed  CAS  Google Scholar 

  34. Adamson, H., Lennon, M., Ou, Ke-li, Packer, N., and Walmsley, J., Evidence for a light-independent chlorophyll biosynthetic pathway in angiosperm seeds germinated in darkness, Curr. Res. Photosynth., 1990, pp. 2593–2596.

    Chapter  Google Scholar 

  35. Adamson, H.Y., Hiller, R.G., and Walmsley, J., Protochlorophyllide reduction and greening in angiosperms–an evolutionary perspective, J. Photochem. Photobiol., B., 1997, vol. 41, pp. 201–221.

    Article  CAS  Google Scholar 

  36. Cuttriss, A.J. and Pogson, B.J., in Plant Pigments and Their Manipulation, Davies, K.M., Ed., Boca Raton, FL: CRC Press, 2004, pp. 57–91.

  37. Cazzonelli, C.I., Carotenoids in nature: insights from plants and beyond, Funct. Plant Biol., 2011, vol. 38, pp. 833–847.

    Article  CAS  Google Scholar 

  38. Edge, R. and Truscott, G., Properties of carotenoid radicals and excited states and their potential role in biological systems, in Carotenoids: Physical, Chemical, and Biological Functions and Properties, Landrum, J.T., Ed., Dordrecht: Kluwer, 2010, pp. 283–307.

    Google Scholar 

  39. Jahns, P. and Holzwarth, A.R., The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II, Biochim. Biophys. Acta., 2012, vol. 1817, pp. 182–193.

    Article  PubMed  CAS  Google Scholar 

  40. Mansfield, S.G. and Briarty, L.G., Cotyledon cell development in Arabidopsis thaliana during reserve deposition, Can. J. Bot., 1992, vol. 70, pp. 151–164.

    Article  Google Scholar 

  41. Brehelin, C. and Kessler, F., The plastoglobule: a bag full of lipid biochemistry tricks, Photochem. Photobiol., 2008, vol. 84, pp. 1388–1394.

    Article  PubMed  CAS  Google Scholar 

  42. Smolikova, G.N. and Medvedev, S.S., Seed carotenoids: synthesis, diversity, and functions, Russ. J. Plant Physiol., 2015, vol. 62, pp. 1–13.

    Article  CAS  Google Scholar 

  43. Poddubnaya-Arnol’di, V.A., Tsitoembriologiya pokrytosemennykh rastenii. Osnovy i perspektivy (Cytoembriology of Angiosperms. Basics and Perspectives), Moscow: Nauka, 1976.

    Google Scholar 

  44. Antoszewski, R., Dabydeen, S., and Lalla, A., Photosynthetic activity of chloroembryos of a few selected tropical plants, Plant Cell Environ., 1989, vol. 12, pp. 759–763.

    Article  Google Scholar 

  45. Asokanthan, P.S., Johnson, R.W., Griffith, M., and Krol, M., The photosynthetic potential of canola embryos, Physiol. Plant., 1997, vol. 101, pp. 353–360.

    Article  CAS  Google Scholar 

  46. Wind, J., Smeekens, S., and Hanson, J., Sucrose: metabolite and signaling molecule, Phytochemistry., 2010, vol. 71, pp. 1610–1614.

    Article  PubMed  CAS  Google Scholar 

  47. Murphy, D.J. and Cummins, I., Biosynthesis of seed storage products during embryogenesis in rapeseed Brassica napus, J. Plant Physiol., 1989, vol. 135, pp. 63–69.

    Article  CAS  Google Scholar 

  48. Zhukova, G.Ya., Gamete and embryo plastids of flowering plants, Bot. Zh., 1993, vol. 78, pp. 18–35.

    Google Scholar 

  49. Tejos, R.I., Mercado, A.V., and Meisel, L.A., Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis, Biol. Res., 2010, vol. 43, pp. 99–111.

    Article  PubMed  Google Scholar 

  50. Le, B.H., Cheng, C., Bui, A.Q., Wagmaister, J.A., Henry, K.F., Pelletier, J., Kwong, L., Belmonte, M., Kirkbride, R., Horvath, S., Drews, G.N., Fischer, R.L., Okamuro, J.K., Harada, J.J., and Goldberg, R.B., Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors, Proc. Natl. Acad. Sci. USA., 2010, vol. 107, pp. 8063–8070.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Belmonte, M.F., Kirkbride, R.C., Stone, S.L., Pelletier, J.M., Bui, A.Q., Yeung, E.C., Hashimoto, M., Fei, J., Harada, C.M., Munoz, M.D., Le, B.H., Drews, G.N., Brady, S.M., Goldberg, R.B., and Harada, J.J., Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed, Proc. Natl. Acad. Sci. USA., 2013, vol. 110: E435–E444.

  52. Kremnev, D. and Strand, A., Plastid encoded RNA polymerase activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis, Front. Plant Sci., 2014, vol. 5, pp. 385–397.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Wise, R.R., The diversity of plastid form and function, in The Structure and Function of Plastids, Wise, R.R., Hoober, J.K, Eds., Springer, 2006, pp. 3–26.

    Chapter  Google Scholar 

  54. Solymosi, K. and Schoefs, B., Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms, Photosynth. Res., 2010, vol. 105, pp. 143–166.

    Article  PubMed  CAS  Google Scholar 

  55. Johnson, R.W., Asokanthan, P.S., and Griffith, M., Water and sucrose regulate canola embryo development, Physiol. Plant., 1997, vol. 101, pp. 361–366.

    Article  CAS  Google Scholar 

  56. Weber, H., Borisjuk, L., and Wobus, U., Molecular physiology of legume seed development, Annu. Rev. Plant Biol., 2005, vol. 56, pp. 253–279.

    Article  PubMed  CAS  Google Scholar 

  57. Allorent, G., Osorio, S., Vu, J.L., Falconet, D., Jouhet, J., Kuntz, M., Fernie, A.R., Lerbs-Mache, S., Macherel, D., Courtois, F., and Finazzi, G., Adjustments of embryonic photosynthetic activity modulate seed fitness in Arabidopsis thaliana, New Phytol., 2015, vol. 205, pp. 707–719.

    Article  PubMed  CAS  Google Scholar 

  58. Poddubnaya-Arnol’di, V.A., Obshchaya embriologiya pokrytosemennykh rastenii (General Embryology of Angiosperms), Moscow: Nauka, 1964.

    Google Scholar 

  59. Allen, D.K., Ohlrogge, J.B., and Shachar-Hill, Y., The role of light in soybean seed filling metabolism, Plant J., 2009, vol. 58, pp. 220–234.

    Article  PubMed  CAS  Google Scholar 

  60. Kalaji, H.M., Schansker, G., Ladle, R.J., Goltsev, V., Bosa, K., Allakhverdiev, S.I., Brestic, M., Bussotti, F., Calatayud, A., Dabrowski, P., Elsheery, N.I., Ferroni, L., Guidi, L., Hogewoning, S.W., Jajoo, A., et al., Frequently asked questions about in vivo chlorophyll fluorescence: practical issues, Photosynth. Res., 2014, vol. 122, pp. 121–158.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Borisjuk, L., Nguyen, T.H., Neuberger, T., Rutten, T., Tschiersch, H., Claus, B., Feussner, I., Webb, A.G., Jakob, P., Weber, H., Wobus, U., and Rolletschek, H. Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds, New Phytol., 2005, vol. 167, pp. 761–776.

    Article  PubMed  CAS  Google Scholar 

  62. Yamazaki, J., Kamimura, Y., Okada, M., and Sugimura, Y., Changes in photosynthetic characteristics and photosystem stoichiometries in the lower leaves in rice seedlings, Plant Sci., 1999, vol. 148, pp. 155–163.

    Article  CAS  Google Scholar 

  63. Borisjuk, L., Rolletschek, H., Walenta, S., Panitz, R., Wobus, U., and Weber, H., Energy status and its control on embryogenesis of legumes: ATP distribution within Vicia faba embryos is developmentally regulated and correlated with photosynthetic capacity, Plant J., 2003, vol. 36, pp. 318–329.

    Article  PubMed  CAS  Google Scholar 

  64. King, S.P., Badger, M.R., and Furbank, R.T., CO2 refixation characteristics of developing canola seeds and silique wall, Aust. J. Plant Physiol., 1998, vol. 25, pp. 377–386.

    Article  CAS  Google Scholar 

  65. Bao, X.M., Pollard, M., and Ohlrogge, J., The biosynthesis of erucic acid in developing embryos of Brassica rapa, Plant Physiol., 1998, vol. 118, pp. 183–190.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Borisjuk, L. and Rolletschek, H., The oxygen status of the developing seed, New Phytol., 2009, vol. 182, pp. 17–30.

    Article  PubMed  CAS  Google Scholar 

  67. Tschiersch, H., Borisjuk, L., Rutten, T., and Rolletschek, H., Gradients of seed photosynthesis and its role for oxygen balancing, Biosystems., 2011, vol. 103, pp. 302–308.

    Article  PubMed  CAS  Google Scholar 

  68. Rolletschek, H., Weber, H., and Borisjuk, L., Energy status and its control on embryogenesis of legumes: embryo photosynthesis contributes to oxygen supply and is coupled to biosynthetic fluxes, Plant Physiol., 2003, vol. 132, pp. 1196–1206.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Rolletschek, H., Radchuk, R., Klukas, Ch., Schreiber, F., Wobus, U., and Borisjuk, L., Evidence of a key role for photosynthetic oxygen release in oil storage in developing soybean seeds, New Phytol., 2005, vol. 167, pp. 777–786.

    Article  PubMed  CAS  Google Scholar 

  70. Hills, M.J., Control of storage-product synthesis in seeds, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 302–308.

    Article  PubMed  CAS  Google Scholar 

  71. Goffman, F., Ruckle, M., Ohlrogge, J., and ShacharHill, Y., Carbon dioxide concentrations are very high in developing oilseeds, Plant Physiol. Biochem., 2004, vol. 42, pp. 703–708.

    Article  PubMed  CAS  Google Scholar 

  72. Furbank, R.T., White, R., Palta, J.A., and Turner, N.C., Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.): the role of pod wall, seed coat and embryo, J. Exp. Bot.., 2004, vol. 55, pp. 1687–1696.

    Article  PubMed  CAS  Google Scholar 

  73. Schwender, J., Shachar-Hill, Y., and Ohlrogge, J.B., Mitochondrial metabolism in developing embryos of Brassica napus, J. Biol. Chem., 2006, vol. 281, pp. 34 040–34 047.

    Article  CAS  Google Scholar 

  74. Simcox, P.D., Garland, W., Deluca, V., Canvin, D.T., and Dennis, D.T., Respiratory pathways and fat synthesis in the developing castor-oil seed, Can. J. Bot., 1979, vol. 57, pp. 1008–1014.

    Article  CAS  Google Scholar 

  75. Schwender, J., Goffman, F., Ohlrogge, J.B., and Shachar-Hill, Y., Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds, Nature., 2004, vol. 432, pp. 779–782.

    Article  PubMed  CAS  Google Scholar 

  76. Sato, Y., Morita, R., Katsuma, S., Nishimura, M., Tanaka, A., and Kusaba, M., Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex IIdegradation during senescence in rice, Plant J., 2009, vol. 57, pp. 120–131.

    Article  PubMed  CAS  Google Scholar 

  77. Nakajima, S., Ito, H., Tanaka, R., and Tanaka, A., Chlorophyll b reductase plays an essential role in maturation and storability of Arabidopsis seeds, Plant Physiol., 2012, vol. 160, pp. 261–273.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Suzuki, T., Kunieda, T., Murai, F., Morioka, S., and Shioi, Y., Mg-dechelation activity in radish cotyledons with artificial and native substrates, Mg-chlorophyllin a and chlorophyllide a, Plant Physiol. Biochem., 2005, vol. 43, pp. 459–464.

    Article  PubMed  CAS  Google Scholar 

  79. Schelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupinska, K., and Hörtensteiner, S., Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis, Plant Cell., 2009, vol. 21, pp. 767–785.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Pruinská, A., Tanner, G., Anders, I., Roca, M., and Hörtensteiner, S., Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron–sulfur protein, encoded by the accelerated cell death 1 gene, Proc. Natl. Acad. Sci. USA., 2003, vol. 100, pp. 15 259–15 264.

    Article  CAS  Google Scholar 

  81. Chung, D.W., Pruinská, A., Hörtensteiner, S., and Ort, D.R., The role of pheophorbide a oxygenase expression and activity in the canola green seed problem, Plant Physiol., 2006, vol. 142, pp. 88–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Hörtensteiner, S., Update on the biochemistry of chlorophyll breakdown, Plant Mol. Biol., 2013, vol. 82, pp. 505–517.

    Article  PubMed  CAS  Google Scholar 

  83. Kulkarni, M.G., Dalai, A.K., and Bakhshi, N.N., Utilization of green seed canola oil for biodiesel production, J. Chem. Technol. Biotechnol., 2006, vol. 81, pp. 1886–1893.

  84. Diosady, L.L., Chlorophyll removal from edible oils, Int. J. Appl. Sci. Eng., 2005, vol. 3, pp. 81–88.

    Google Scholar 

  85. Johnson-Flanagan, A.M. and Thiagarajah, M.R., Degreening in canola (Brassica napus cv. Westar) embryos under optimum conditions, J. Plant Physiol.., 1990, vol. 136, pp. 180–186.

    Article  CAS  Google Scholar 

  86. Armstead, I., Donnison, I., Aubry, S., Harper, J., Hö rtensteiner, S., James, C., Mani, J., Moffet, M., Ougham, H., Roberts, L., Thomas, A., Weeden, N., Thomas, H., and King, I., Cross-species identification of Mendel’s locus, Science., 2007, vol. 315, p. 73.

    Article  PubMed  CAS  Google Scholar 

  87. Sato, Y., Morita, R., Nishimura, M., Yamaguchi, H., and Kusaba, M., Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway, Proc. Natl. Acad. Sci. USA., 2007, vol. 104, pp. 14169–14174.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Barry, C.S., McQuinn, R.P., Chung, M.Y., Besuden, A., and Giovannoni, J.J., Amino acid substitutions in homologs of the stay-green protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper, Plant Physiol., 2008, vol. 147, pp. 179–187.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Borovsky, Y. and Paran, I., Chlorophyll breakdown during pepper fruit ripening in the chlorophyll retainer mutation is impaired at the homolog of the senescenceinducible STAY-GREEN gene, Theor. Appl. Genet., 2008, vol. 117, pp. 235–240.

    Article  PubMed  CAS  Google Scholar 

  90. Hörtensteiner, S., Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence, Trends Plant Sci., 2009, vol. 14, pp. 155–162.

    Article  PubMed  CAS  Google Scholar 

  91. Nambara, E., Keith, K., McCourt, P., and Naito, S., A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana, Development, 1995, vol. 121, pp. 629–636.

    CAS  Google Scholar 

  92. Parcy, F., Valon, C., Kohara, A., Miséra, S., and Giraudat, J., The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development, Plant Cell., 1997, vol. 9, pp. 1265–1277.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Clerkx, E.J.M., Vries, M.H.C., Ruiys, G.J., Groot, S.P.C., and Koornneef, M., Characterization of green seed, an enhancer of abi3-1 in Arabidopsis that affects seed longevity, Plant Physiol., 2003, vol. 132, pp. 1077–1084.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Delmas, F., Sankaranarayanan, S., Deb, S., Widdup, E., Bournonville, C., Bollier, N., Northey, J.G.B., McCourt, P., and Samuel, M.A., ABI3 controls embryo degreening through Mendel’s locus, Proc. Natl. Acad. Sci. USA, 2013, vol. 16, pp. E3888–E3894.

  95. Sakuraba, Y., Park, S.Y., and Paek, N.Ch., The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation, Mol. Cells., 2015. http://dxdoiorg/10.14348/molcells.2015.0039

    Google Scholar 

  96. Batygina, T.B., Genetic heterogeneity in seeds, in Embriologiya tsvetkovykh rastenii. T. 3. Sistemy reproduktsii (Embryology of Flowering Plants, vol. 3, Systems of Reproduction), Batygina, T.B., Ed., St. Petersburg: Mir i Sem’ya, 2000, pp. 401–403.

    Google Scholar 

  97. Matilla, A., Gallardo, M., and Puga-Hermida, M.I., Structural, physiological and molecular aspects of heterogeneity in seeds, Seed Sci. Res., 2005, vol. 15, pp. 63–76.

    Article  CAS  Google Scholar 

  98. Jalink, H., Van der Schoor, R., Frandas, A., Van Pijien, J.G., and Bino, R.J., Chlorophyll fluorescence of Brassica oleracea seeds as a non-destructive marker for seed maturity and seed performance, Seed Sci. Res., 1998, vol. 8, pp. 437–443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Smolikova.

Additional information

Original Russian Text © G.N. Smolikova, S.S. Medvedev, 2016, published in Fiziologiya Rastenii, 2016, Vol. 63, No. 1, pp. 3–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolikova, G.N., Medvedev, S.S. Photosynthesis in the seeds of chloroembryophytes. Russ J Plant Physiol 63, 1–12 (2016). https://doi.org/10.1134/S1021443715060163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715060163

Keywords

Navigation