Skip to main content
Log in

Hydrolytic enzymes and their proteinaceous inhibitors in regulation of plant–pathogen interactions

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This review considers the main groups of hydrolytic enzymes associated with plant pathogens, as well as proteinaceous inhibitors of these enzymes, acting as the components of plant defense system. The role of hydrolases is described in the development of a pathological process in plant tissues. Significance of hydrolase inhibitors in the development of plant resistance to pathogens is analyzed. It is proposed that specific interactions in the “host plant–pathogen” system, involving hydrolytic enzymes and their proteinaceous inhibitors, depend on the nutritional specialization of fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAI:

knottin-like inhibitors of α-amylases

BFI:

bifunctional inhibitors

CM-proteins:

chloroform–methanol proteins

ISR:

induced systemic resistance

JA:

jasmonic acid

LRR:

leucine-rich repeats

PG:

polygalacturonase

PGIP:

polygalacturonase-inhibiting proteins

SA:

salicylic acid

SAR:

acquired resistance

SBBI:

soybean-derived Bowman–Birk inhibitor

SBTI:

soybean trypsin inhibitor

References

  1. Protsenko, M.A., Bulantseva, E.A., and Korableva, N.P., Polygalacturonase-inhibiting proteins in plant fleshy fruits during their ripening and infections, Russ. J. Plant Physiol., 2010, vol. 57, pp. 356–362.

    Article  CAS  Google Scholar 

  2. Kudryavtseva, N.N., Sof’in, A.V., Revina, T.A., Gvozdeva, E.L., Ievleva, E.V., and Valueva, T.A., Secretion of proteolytic enzymes by three phytopathogenic microorganisms, Appl. Biochem. Microbiol., 2013, vol. 49, pp. 514–520.

    Article  CAS  Google Scholar 

  3. Silva, T.M., Damasio, A.R., Maller, A., Michelin, M., Squina, F.M., Jorge, J.A., and Polizeli M. de L., Purification, partial characterization, and covalent immobilization- stabilization of an extracellular a-amylase from Aspergillus niveus, Folia Microbiol., 2013, vol. 58, pp. 495–502.

    CAS  Google Scholar 

  4. Mosolov, V.V. and Valueva, T.A., Participation of proteolytic enzymes in the interaction of plants with phytopathogenic microorganisms, Biochemistry (Moscow), 2006, vol. 71, pp. 838–845.

    Article  CAS  Google Scholar 

  5. Revina, T.A., Kladnitskaya, G.V., Gerasimova, N.G., Gvozdeva, E.L., and Valueva, T.A., Protein trypsin inhibitor from potato tubers, Biochemistry (Moscow), 2010, vol. 75, pp. 36–40.

    Article  CAS  Google Scholar 

  6. Kalve, N.D., Lomate, P.R., and Hivrale, V.K., A proteinaceous thermo labile a-amylase inhibitor from Albizia lebbeck with inhibitory potential toward insect amylases, Arthropod Plant Interact., 2012, vol. 6, pp. 213–220.

    Article  Google Scholar 

  7. Valencia-Jimenez, A., Arboleda, V., and Grossi de Se, M.F., Activity of a-amylase inhibitors from Phaseolus coccineus on digestive a-amylases of the coffee berry borer, J. Agric. Food Chem., 2008, vol. 56, pp. 2315–2320.

    Article  CAS  PubMed  Google Scholar 

  8. Gatehouse, J.A., Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects, Curr. Protein Pept. Sci., 2011, vol. 12, pp. 409–416.

    Article  CAS  PubMed  Google Scholar 

  9. Dunaevskii, Ya.E., Matveeva, A.R., Fatkhullina, G.N., Belyakova, G.A., Kolomiets, T.M., Kovalenko, E.D., and Belozerskii, M.A., Extracellular proteases of mycelial fungi as participants of pathogenic processes, Russ. J. Bioorg. Chem., 2008, vol. 34, pp. 286–289.

    Article  CAS  Google Scholar 

  10. Protsenko, M.A., Buza, N.L., Krinitsina, A.A., Bulantseva, E.A., and Korableva, N.P., Polygalacturonase- inhibiting protein is a structural component of plant cell wall, Biochemistry (Moscow), 2008, vol. 73, pp. 1053–1062.

    Article  CAS  Google Scholar 

  11. Arunachalam, C. and Asha, S., Pectinolytic enzyme–a review of new studies, Adv. Biotech. J. Online, 2010, vol. 9, pp. 1–5. http://wwwadvancedbiotechin/online

    Google Scholar 

  12. Van den Brink, J. and de Vries, R., Fungal enzyme sets for plant polysaccharide degradation, Appl. Microbiol. Biotechnol., 2011, vol. 91, pp. 1477–1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sinitsyna, O.A., Fedorova, E.A., Semenova, M.V., Gusanov, A.V., Sokolova, L.M., Bubnova, T.M., and Okunev, O.N., Isolation and characterization of extracellular pectin lyase from Penicillium canescens, Biochemistry (Moscow), 2007, vol. 72, pp. 565–571.

    Article  CAS  Google Scholar 

  14. Federici, L., di Matteo, A., Fernandez-Recio, J., Tsernoglou, D., and Cervone, F., Polygalacturonase inhibiting proteins: players in plant innate immunity? Trends Plant Sci., 2006, vol. 11, pp. 65–70.

    Article  CAS  PubMed  Google Scholar 

  15. Niture, K., Comparative biochemical and structural characterizations of fungal polygalacturonases, Biologia, 2008, vol. 63, pp. 1–19.

    Article  CAS  Google Scholar 

  16. Maulik, A., Ghosh, H., and Basu, S., Comparative study of protein–protein interaction observed in polygalacturonase- inhibiting proteins from Phaseolus vulgaris and Glycine max and polygalacturonase from Fusarium moniliforme, BMC Genomics, 2009, vol. 10, pp. 1–12.

    Article  Google Scholar 

  17. Kars, I. and van Kan, J.A.L., Extracellular enzymes and metabolites involved in pathogenesis of Botrytis, in Botrytis: Biology, Pathology and Control, Elad, Y., Williamson, B., Tudzynski, P., and Delen, N., Eds., Dordrecht, Netherlands: Springer-Verlag, 2007, pp. 99–118.

    Chapter  Google Scholar 

  18. Basaran, P., Ozcan, M., Denisov, Y., and Freeman, S., Elucidation of pectinolytic enzyme activities of a nonpathogenic watermelon pathogen mutant, Fusarium oxysporum f. sp. niveum m87, Aust. Plant Pathol., 2007, vol. 36, pp. 135–141.

    Article  CAS  Google Scholar 

  19. Manjurul Md., Haque, Md. and Tsuyumu, S., Virulence, resistance to magainin II,and expression of pectate lyase are controlled by the PhoP-PhoQ two-component regulatory system responding to pH and magnesium in Erwinia chrysanthemi 3937, J. Gen. Plant Pathol., 2005, vol. 71, pp. 47–50.

    Google Scholar 

  20. Payasi, A., Sanwal, R., and Sanwal, G.G., Microbial pectate lyases: characterization and enzymological properties, World J. Microbiol. Biotechnol., 2009, vol. 25, pp. 1–14.

    Article  CAS  Google Scholar 

  21. Creze, C., Castang, S., Derivery, E., and Haser, R., The crystal structure of pectate lyase Pell from soft rot pathogen Erwinia chrysanthemi in complex with its substrate, J. Biol. Chem., 2008, vol. 283, pp. 18260–18268.

    Article  CAS  PubMed  Google Scholar 

  22. Mohidul, M., Vivek, K., and Hyun K., Baek, K., Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: a mini review, Environ. Sci. Biotechnol., 2013, vol. 12, pp. 209–221.

    Article  Google Scholar 

  23. Mosolov, V.V. and Valueva, T.A., Proteinase inhibitors and their function in plants: a review, Appl. Biochem. Microbiol., 2005, vol. 41, pp. 227–246.

    Article  CAS  Google Scholar 

  24. Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, Vl.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, pp. 141–154.

    Article  CAS  Google Scholar 

  25. Ferrari, S., Savatin, D.V., Sicilia, F., Gramegna, G., Cervone, F., and Lorenzo, G., Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development, Front. Plant Sci., 2013, vol. 4, no. 49, doi doi 10.3389/fpls.2013.00049

  26. Vu, B.V., Itoh, K., Nguyen, Q.B., Tosa, Y., and Nakayashiki, H., Cellulases belonging to glycoside hydrolase families 6 and 7 contribute to the virulence of Magnaporthe oryzae, Mol. Plant–Microbe Interact., 2012, vol. 25, pp. 1135–1141.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, J., Bruton, B.D., and Biles, C.L., Cell walldegrading enzymes of Didymella bryoniae in relation to fungal growth and virulence in cantaloupe fruit, Eur. J. Plant Pathol., 2014, vol. 139, pp. 749–761.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baldrian, P., Voriskova, J., Dobiasova, P., Merhautova, V., Lisa, L., and Valaskova, V., Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil, Plant Sci., 2011, vol. 338, pp. 111–125.

    CAS  Google Scholar 

  29. Yan, S. and Wu, G., Secretory pathway of cellulase: a mini-review, Biotechnol. Biofuels, 2013, vol. 6, no. 177, doi 10.1186/1754-6834-6-177

    Google Scholar 

  30. King, B.C., Waxman, K.D., Nenni, N.V., Walker, L.P., Bergstrom, G.C., and Gibson, D.M., Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi, Biotechnol. Biofuels, 2011, vol. 4, no. 4, doi 10.1186/1754-6834-4-4

    Google Scholar 

  31. Ramanathan, S., Banupriya, S., and Abirami, D., Production and optimization of cellulose from Fusarium oxysporum by submerged fermentation, J. Sci. Ind. Res., 2010, vol. 69, pp. 454–459.

    CAS  Google Scholar 

  32. Keinath, A.P., From native plants in central Europe to cultivated crops worldwide: the emergence of Didymella bryoniae as a cucurbit pathogen, HortScience, 2011, vol. 46, pp. 532–535.

    Google Scholar 

  33. Zamani, M., Tehrani, A., Ahmadzadeh, M., Hosseininaveh, V., and Mostofy, Y., Control of Penicillium digitatum on orange fruit combining Pantoea agglomerans with hot sodium bicarbonate dipping, J. Plant Pathol., 2009, vol. 91, pp. 437–442.

  34. Ievleva, E.V., Revina, T.A., Kudryavtseva, N.N., Sof’in, A.V., and Valueva, T.A., Extracellular proteinases from the phytopathogenic fungus Fusarium culmorum, Appl. Biochem. Microbiol., 2006, vol. 42, pp. 298–303.

    Article  CAS  Google Scholar 

  35. Geethu, C., Resna, A.K., and Nair, R., Characterization of major hydrolytic enzymes secreted by Pythium myriotylum, causative agent for soft rot disease, Antonie van Leeuwenhoek, 2013, vol. 104, pp. 749–757.

    Article  CAS  Google Scholar 

  36. Huma, H. and Khalid, M.F., Plant protease inhibitors: a defense strategy in plants, Biotechnol. Mol. Biol. Rev., 2007, vol. 2, pp. 068–085.

    Google Scholar 

  37. Chand, R., Kumar, M., Kushwaha, C., Shah, K., and Joshi, A., Role of melanin in release of extracellular enzymes and selection of aggressive isolates of Bipolaris sorokiniana in barley, Curr. Microbiol., 2014, vol. 69, pp. 202–211.

    Article  CAS  PubMed  Google Scholar 

  38. Feng, T., Nyffenegger, C., Hojrup, P., Vidal-Melgosa, S., Yan, K., Ulrik, Fangel, J., Meyer, A.S., and Kirpekar, F., Characterization of an extension-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1, Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 10 077–10 089.

    Google Scholar 

  39. Ibragimov, R.I., Yarullina, L.G., Shpirnaya, I.A., Umarov, I.A., Tsvetkov, V.O., and Maksimov, I.V., Biochemical factors of plant resistance to pathogens, Sovrem. Naukoemkie Tekhnol., 2010, no. 4, pp. 46–48.

    Google Scholar 

  40. Gomes, M.T.R., Oliva, M.L., Lopes, M.T.P., and Salas, C.E., Plant proteinases and inhibitors: an overview of biological function and pharmacological activity, Curr. Protein Pept. Sci., 2011, vol. 12, pp. 417–436.

    Article  CAS  PubMed  Google Scholar 

  41. Volpicella, M., Leoni, C., Costanza, A., de Leo, F., Gallerani, R., and Ceci, L.R., Cystatins, serpins and other families of protease inhibitors in plants, Curr. Protein Pept. Sci., 2011, vol. 12, pp. 386–398.

    Article  CAS  PubMed  Google Scholar 

  42. Carlile, A., Bindschedler, L., Bailey, A.M., Bowyer, P., Clarkson, J.M., and Cooper, R.M., Characterization of SNP1, a cell wall degrading trypsin, produced during infection by Stagonospora nodorum, Mol. Plant–Microbe Interact., 2000, vol. 13, pp. 538–550.

    CAS  PubMed  Google Scholar 

  43. Poloni, A., Pessi, I.S., Frazzon, P.G., and van der Sand, S.T., Morphology, physiology, and virulence of Bipolaris sorokiniana isolates, Curr. Microbiol., 2009, vol. 59, pp. 267–273.

    CAS  PubMed  Google Scholar 

  44. Olivieri, F., Zanetti, M.E., Oliva, C.R., Covarruibias, A., and Casalongue, C., Characterization of a novel extracellular serine protease of Fusarium eumartii and its action on pathogenesis related proteins, Eur. J. Plant Pathol., 2002, vol. 108, pp. 63–72.

    Article  CAS  Google Scholar 

  45. Facincani, A.P., Moreira, L.M., Soares, M.R., Ferreira, C.B., Ferreira, R.M., Ferro, M.I.T., Ferro, J.A., Gozzo, F.C., and de Oliveira, J.C.F., Comparative proteomic analysis reveals that T3SS, Tfp, and xanthan gum are key factors in initial stages of Citrus sinensis infection by Xanthomonas citri subsp. citri, Funct. Integr. Genomics, 2014, vol. 14, pp. 205–217.

    Article  CAS  PubMed  Google Scholar 

  46. Abramovitch, R. and Martin, G., Strategies used by bacterial pathogens to suppress plant defenses, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 356–364.

    Article  CAS  PubMed  Google Scholar 

  47. Alfano, J.R. and Collmer, A., Type III secretion system effector proteins: double agents in bacterial disease and plant defense, Annu. Rev. Phytopathol., 2004, vol. 42, pp. 385–414.

    Article  CAS  PubMed  Google Scholar 

  48. Gazi, A., Sarris, P.F., Fadouloglou, V.E., Charova, S.N., Mathioudakis, N., Panopoulos, N.J., and Kokkinidis, M., Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains, BMC Microbiology, 2012, vol. 12, no. 188. doi 10.1186/1471-2180-12-188

    Google Scholar 

  49. Kubrak, O.I. and Lushchak, V.I., Production and patterns of a-amylase from Bacillus sp. BKL40, Biotekhnologiya (Kiev), 2009, vol. 2, no. 1, pp. 69–79.

    Google Scholar 

  50. Avdiyuk, E.V., Varbanets, L.D., Safronova, L.A., and Kharkevich, E.S., Purification and patterns of a-amylases from Aspergillus flavus var. oryzae and Bacillus subtilis, Biotekhnologiya (Kiev), 2012, vol. 5, no. 5, pp. 91–99.

    Google Scholar 

  51. Gappa-Adachi, R., Yano, K., Takeuchi, S., Morita, Y., and Uematsu, S., Phytophthora blight of southern star (Oxypetalum caeruleum) caused by Phytophthora palmivora in Japan, J. Gen. Plant Pathol., 2012, vol. 78, pp. 39–42.

    Article  Google Scholar 

  52. Morkunas, I., Formela, M., Marczak, L., Stobiecki, M., and Bednarski, W., The mobilization of defence mechanisms in the early stages of pea seed germination against Ascochyta pisi, Protoplasma, 2013, vol. 250, pp. 63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Avdiyuk, E.V. and Varbanets, L.D., a-Amylases from Aspergillus flavus var. oryzae and Bacillus subtilis: substrate specificity and resistance to some chemical active substances, Biotekhnologiya (Kiev), 2013, vol. 6, no. 3, pp. 36–45.

    Google Scholar 

  54. Varbanets, L.D., Avdiyuk, E.V., and Borzova, N.V., Microbial a-amylases: isolation, purification and practical usage, Biotechnologia Acta, 2008, vol. 1, no. 2, pp. 39–51.

    Google Scholar 

  55. Sailas, R.B., Smitha, V.N., Jisha, S., Pradeep, S., Sajith, S., Sreedevi, K.N., Unni, M.K., and Josh, S., A monograph on amylases from Bacillus spp., Adv. Biosci. Biotechnol., 2013, vol. 4, pp. 227–241.

    Article  Google Scholar 

  56. Konarev, A.V., Proteinase inhibitors and resistance to Leptinotarsa decemlineata in potato, in Sovremennye sistemy zashchity i novye napravleniya v povyshenii ustoichivosti kartofelya k koloradskomu zhuku, ser. Geneticheskaya inzheneriya i ekologiya (Current Systems of Defense and New Concept in Increase of Resistance to Leptinotarsa decemlineata in Potato. Ser. Genetic Engineering and Ecology), 2000, vol. 1, pp. 35–40.

    Google Scholar 

  57. Khadeeva, N.V., Kochieva, E.Z., Cherednichenko, M.Yu., Yakovleva, E.Yu., Sidoruk, K.V., Bogush, V.G., Dunaevskii, Ya.E., and Belozerskii, M.A., Use of buckwheat seed protease inhibitor gene for improvement of tobacco and potato plant resistance to biotic stress, Biochemistry (Moscow), 2009, vol. 74, pp. 260–267.

    Article  CAS  Google Scholar 

  58. Abdeen, A., Virgos, A., Olivella, E., Villnueva, J., Aviles, X., Gabarra, R., and Prat, S., Multiple insect resistance in transgenic tomato plants overexpressing two families of plant proteinase inhibitors, Plant Mol. Biol., 2005, vol. 57, pp. 189–202.

    Article  CAS  PubMed  Google Scholar 

  59. Charity, J.A., Hughes, P., Anderson, M.A., Bittisnich, D.J., Whitecroßs, M., and Higgins, T.J.V., Pest and disease protection conferred by expression of barley ß-hordothionin and Nicotiana alata proteinase inhibitor genes in transgenic tobacco, Funct. Plant Biol., 2005, vol. 32, pp. 35–44.

    Article  CAS  Google Scholar 

  60. Islamov, R.A. and Furusov, O.V., Bifunctional inhibitor of alpha-amylase/trypsin from wheat grain, Appl. Biochem. Microbiol., 2007, vol. 43, pp. 379–382.

    Article  CAS  Google Scholar 

  61. Kandelinskaya, O.L., Grishchenko, E.R., Domash, V.I., and Topunov, A.F., Influence of epibrassinolide on the activity of lupine lectin-like proteins and proteinaseinhibitory systems under the sodium chloride salinization, Agrochemistry, 2008, no. 9, pp. 45–49.

    Google Scholar 

  62. Ryan, C.A., Kuo, T., Pearce, G., and Kunkel, R., Variability in the concentration of three heat stable proteinase inhibitor proteins in potato tubers, Am. Potato J., 1976, vol. 53, no. 12, pp. 433–455.

    Article  Google Scholar 

  63. Bode, W. and Huber, R., Structural basis of the endoproteinase–protein inhibitor interaction, Biochim. Biophys. Acta, 2000, vol. 1477, pp. 241–252.

    Article  CAS  PubMed  Google Scholar 

  64. Jamal, F., Pandey, P.K., Singh, D., and Khan, M.Y., Serine protease inhibitors in plants: nature’s arsenal crafted for insect predators, Phytochem. Rev., 2013, vol. 12, pp. 1–34.

    Article  CAS  Google Scholar 

  65. Capocchi, A., Muccilli, V., Cunsolo, V., Saletti, R., Foti, S., and Fontanini, D., Heterotetrameric a-amylase inhibitor from emmer (Triticum dicoccon Schrank) seeds, Phytochemistry, 2013, vol. 88, pp. 6–14.

    Article  CAS  PubMed  Google Scholar 

  66. Zemke, K.J., Muller-Fahrnow, A., and Jany, K., The three-dimensional structure of the bifunctional proteinase K/a-amylase inhibitor from wheat (PKI3) at 2.5 Å resolution, FEBS Lett., 1991, vol. 397, pp. 240–242.

    Article  Google Scholar 

  67. Nesterenko, M.V., Gvozdeva, E.L., Mitskevich, L.G., and Mosolov, V.V., Subtilisin-binding site localization in the molecule of bifunctional wheat inhibitor, Biokhimiya, 1989, vol. 54, pp. 838–845.

    CAS  Google Scholar 

  68. Mehrabadi, M., Bandani, A.R., and Saadati, F., Inhibition of Sunn pest, Eurygaster integriceps, a-amylases by a-amylase inhibitors (T-aAI) from Triticale, J. Insect. Sci., 2010, vol. 10, pp. 1–13.

    Google Scholar 

  69. Franco, L., Rigden, D., Melo, F., and Grossi de Sa M., Plant a-amylase inhibitors and their interaction with insect a-amylases, Eur. J. Biochem., 2002, vol. 269, pp. 397–412.

    Article  CAS  PubMed  Google Scholar 

  70. Svensson, B., Fukuda, K., Nielsen, P.K., and Bonsager, B.C., Proteinaceous a-amylase inhibitors, Biochim. Biophys. Acta, 2004, vol. 1696, pp. 145–156.

    Article  CAS  PubMed  Google Scholar 

  71. Alves, D.T., Vasconcelos, I.M., Oliveira, J.T., Farias, L.R., Dias, S.C., and Chiarello, M.D., Identification of four novel members of Kunitz-like a-amylase inhibitors family from Delonix regia with activity toward coleopteran insects, Pestic. Biochem. Phys., 2009, vol. 95, pp. 166–172.

    Article  CAS  Google Scholar 

  72. Nitti, G., Orru, S., Bloch, C., Morhy, L., Marino, G., and Pucci, P., Amino acid sequence and disulphidebridge pattern of three gamma-thionins from Sorghum bicolor, Eur. J. Biochem., 1995, vol. 228, pp. 250–256.

    Article  CAS  PubMed  Google Scholar 

  73. Campos, F. and Richardson, M., The complete amino acid sequence of the bifunctional a-amylase/trypsin inhibitor from seeds of ragi (Indian finger millet, Eleusine coracana Gaertn.), FEBS Lett., 1983, vol. 152, pp. 300–304.

    Article  CAS  Google Scholar 

  74. Iulek, J., Franco, O.L., Silva, M., Slivinski, C.T., Bloch, C., Rigden, D.J., and Grossi de Sa, M.F., Purification, biochemical characterization and partial primary structure of a new alpha-amylase inhibitor from Secale cereale (rye), Int. J. Biochem. Cell Biol., 2000, vol. 32, pp. 1195–1204.

    Article  CAS  PubMed  Google Scholar 

  75. Khaliluev, M.R. and Shpakovskii, G.V., Genetic engineering strategies for enhancing tomato resistance to fungal and bacterial pathogens, Russ. J. Plant Physiol., 2013, vol. 60, pp. 721–732.

    Article  CAS  Google Scholar 

  76. Radhajeyalakshmi, R., Velazhahan, R., Balasubramanian, P., and Doraiswamy, S., Overexpression of thaumatin-like protein in transgenic tomato plants confers enhanced resistance to Alternaria solani, Arch. Phytopathol. Plant Protect., 2005, vol. 38, pp. 257–266.

    Article  CAS  Google Scholar 

  77. Korneeva, I.V., Varlamova, N.V., Pushin, A.S., Firsov, A.P., Dolgov, S.V., Monakhos, G.F., Shalamzari, A., and Dzhalilov, F.S., Transgenic tomato plants expressing PR-5 protein genes demonstrated resistance against Phytophthora infestans and Xanthomonas vesicatoria, Acta Hortic., 2011, vol. 914, pp. 415–418.

    Article  CAS  Google Scholar 

  78. Hwang, B.H., Bae, H., Lim, H.S., Kim, K.B., Kim, S.J., Im, M.H., Park, B.S., Kim, D.S., and Kim, J., Overexpression of polygalacturonase-inhibiting protein 2 (PGIP2) of Chinese cabbage (Brassica rapa ssp. pekinensis) increased resistance to the bacterial pathogen Pectobacterium carotovorum ssp. carotovorum, Plant Cell Tissue Organ Cult., 2010, vol. 103, pp. 293–305.

    Article  CAS  Google Scholar 

  79. Golba, B., Treutter, D., and Kollar, A., Effects of apple (Malus domestica Borkh.) phenolic compounds on proteins and cell wall-degrading enzymes of Venturia inaequalis, Trees, 2011, vol. 26, pp. 131–139.

    Article  Google Scholar 

  80. Sami, A.J. and Shakoori, A.R., Cellulase activity inhibition and growth retardation of associated bacterial strains of Aulacophora foviecollis by two glycosylated flavonoids isolated from Mangifera indica leaves, J. Med. Plants Res., 2011, vol. 5, pp. 184–190.

    CAS  Google Scholar 

  81. Kont, R., Kurasin, M., Teugjas, H., and Valjamae, P., Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw, Biotechnol. Biofuels, 2013, vol. 6, pp. 1–14.

    Article  Google Scholar 

  82. Domash, V.I., Sharpio, T.P., and Zabreiko, S.A., Plant inhibitors of proteolysis and possibility for their use in medicine, Vestn. Akad. Nauk Belorussii, Ser. Med. Nauk, 2008, no. 1, pp. 58–63.

    Google Scholar 

  83. Mosolov, V.V. and Valueva, T.A., Inhibitors of proteolytic enzymes under abiotic stresses in plants (review), Appl. Biochem. Microbiol., 2011, vol. 47, pp. 453–459.

    Article  CAS  Google Scholar 

  84. Yang, D.H., Hettenhausen, C., and Baldwin, I.T., BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata’s responses to herbivory, J. Exp. Bot., 2011, vol. 62, pp. 641–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vasyukova, N.I., Chalenko, G.I., Gerasimova, N.G., Valueva, T.A., and Ozeretskovskaya, O.L., Activation of elicitor defensive properties by systemic signal molecules during the interaction between potato and the late blight agent, Appl. Biochem. Microbiol., 2008, vol. 44, pp. 213–217.

    Article  CAS  Google Scholar 

  86. Vasyukova, N.I. and Ozeretskovskaya, O.L., Induced plant resistance and salicylic acid: a review, Appl. Biochem. Microbiol., 2007, vol. 43, pp. 367–373.

    Article  CAS  Google Scholar 

  87. Vasyukova, N.I. and Ozeretskovskaya, O.L., Jasmonate-dependent defense signaling in plant tissues, Russ. J. Plant Physiol., 2009, vol. 56, pp. 581–590.

    Article  CAS  Google Scholar 

  88. Egger, B. and Koschier, E.H., Behavioural responses of Frankliniella occidentalis Pergande larvae to methyl jasmonate and cis-jasmone, J. Pest Sci., 2014, vol. 87, pp. 53–59.

    Article  Google Scholar 

  89. Yakovleva, V.G., Egorova, A.M., and Tarchevsky, I.A., Proteomic analysis of the effect of methyl jasmonate on pea seedling roots, Dokl. Biochem. Biophys., 2013, vol. 449, pp. 90–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Yarullina.

Additional information

Original Russian Text © L.G. Yarullina, A.R. Akhatova, R.I. Kasimova, 2016, published in Fiziologiya Rastenii, 2016, Vol. 63, No. 2, pp. 205–217.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarullina, L.G., Akhatova, A.R. & Kasimova, R.I. Hydrolytic enzymes and their proteinaceous inhibitors in regulation of plant–pathogen interactions. Russ J Plant Physiol 63, 193–203 (2016). https://doi.org/10.1134/S1021443716020151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716020151

Keywords

Navigation