Skip to main content
Log in

Morphological and Physiological Characteristics of Stevia rebaudiana Cultivated under Different Nitrogen Supplements and Growth Regulators

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Steviol glycosides (SGs) are the important constituents of stevia. SGs biosynthesis is dependent on various nutrients. This study aimed to investigate the effects of nitrogen sources (\({\text{NO}}_{3}^{-}\), \({\text{NH}}_{4}^{ + }\), and NH4NO3 each 150% in modified Hoagland solution) and the plant growth regulators including 200 µM cytokinin (i.e., BAP), 200 µM auxin (i.e., NAA), and their combination on leaf yield, branching, and SGs yield through a hydroponic experiment. The data revealed that the application of NH4NO3 + BAP increased the outgrowth of buds and branching due to a decrease in endogenous auxin and abscisic acid concentrations. Results also showed that there were significant negative correlations between developed axillary buds and branching with endogenous auxin and abscisic acid concentrations. Compared to the control, growth parameters including stem dry weight (567%) and total dry weight (358%) in the first year and leaf dry weight (160%) and height (483%) in the second year significantly increased when the combination of NH4NO3 and BAP was used. The highest stevioside concentration was observed at using NH4NO3 and BAP + NAA in both 2018 and 2019. Besides, the highest rebaudioside-A concentration was detected as NO3 and NAA were applied during the second year. However, the rebaudioside-B and steviolbioside concentrations were declined when plants were subjected to both nitrogen sources and plant growth regulators. Conclusively, the data acquired herein provided valuable clues as to how to successfully achieve the high productivity of stevia plant and biosynthesis of SGs under greenhouse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Mahalak, K.K., Firrman, J., Tomasula, P.M., Nuñez, A., Lee, J.J., Bittinger, K., Rinaldi, W., and Liu, L.S., Impact of steviol glycosides and erythritol on the human and Cebus apella gut microbiome, J. Agric. Food Chem., 2020, vol. 68, p. 13093. https://doi.org/10.1021/acs.jafc.9b06181

    Article  CAS  PubMed  Google Scholar 

  2. Tavakoli, H., Tavakoli, N., and Moradi, F., The effect of the elicitors on the steviol glycosides biosynthesis pathway in Stevia rebaudiana, Funct. Plant Biol., 2019, vol. 46, p. 787. https://doi.org/10.1071/FP19014

    Article  CAS  PubMed  Google Scholar 

  3. Tavakoli, H., Ebadi Khazineh Ghadim, A., Moradi, F., Jahanbakhsh Ghodehkahriz, S., and Gholipouri, A., The effects of \({\text{NH}}_{4}^{ + }\) and \({\text{NO}}_{3}^{-}\) and plant growth regulators on the accumulation of nutrients, carbohydrates and secondary metabolites of Stevia rebaudiana Bertoni, Sugar Technol., 2021, vol. 23, p. 65. https://doi.org/10.1007/s12355-020-00875-2

    Article  CAS  Google Scholar 

  4. Shimizu-Sato, S. and Mori, H., Control of outgrowth and dormancy in axillary buds, Plant Physiol., 2001, vol. 127, p. 1405. https://doi.org/10.1104/pp.010841.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sai, V., Chaturvedula, P., and Zamora, J., Reversed-phase HPLC analysis of steviol glycosides isolated from Stevia rebaudiana Bertoni, Food Nutr. Sci., 2014, vol. 5, p. 1711.

    Google Scholar 

  6. Lee, Y., Lee, D.L.H., Woo, S.K., Lee, S., Kim, M., Influence of auxins, cytokinins, and nitrogen on production of rutin from callus and adventitious roots of the white mulberry tree (Morus alba L.), Plant Cell, Tissue Organ Cult., 2011, p. 9. https://doi.org/10.1007/s11240-010-9832-3

  7. Singh, B., Cheek, H.D., and Haigler, C.H., A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber, Plant Cell Rep., 2009, vol. 28, p. 1023. https://doi.org/10.1007/s00299-009-0714-2

    Article  CAS  PubMed  Google Scholar 

  8. Srivastava, L.M., Apical dominance and some other phenomena illustrating correlative effects of hormones, Plant Growth Dev. Horm. Environ., 2002, p. 303. https://doi.org/10.1016/B978-012660570-9/50156-8

  9. Shimizu-Sato, S., Tanaka, M., and Mori, H., Auxin–cytokinin interactions in the control of shoot branching, Plant Mol. Biol., 2009, vol. 69, p. 429. https://doi.org/10.1007/s11103-008-9416-3

    Article  CAS  PubMed  Google Scholar 

  10. Zheng, C., Halaly, T., Acheampong, A.K., Takebayashi, Y., and Jikumaru, Y., Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism, J. Exp. Bot., 2015, vol. 66, p. 1527. https://doi.org/10.1093/jxb/eru519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, J., Zha, M., Li, Y., Ding, Y., and Chen, L., The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.), Plant Cell Rep., 2015, vol. 34, p. 1647. https://doi.org/10.1007/s00299-015-1815-8

    Article  CAS  PubMed  Google Scholar 

  12. Le Bris, M., Michaux-Ferrière, N., Jacob, Y., Poupet, A., Barthe, P., Guigonis, J.-M., and Le Page-Degivry, M.-T., Regulation of bud dormancy by manipulation of ABA in isolated buds of Rosa hybrida cultured in vitro, Aust. J. Plant Physiol., 1999, vol. 26, p. 273.

    CAS  Google Scholar 

  13. Nacry, P., Bouguyon, E., and Gojon, A., Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource, Plant Soil, 2013, vol. 370, p. 1. https://doi.org/10.1007/s11104-013-1645-9

    Article  CAS  Google Scholar 

  14. Hwang, I., Sheen, J., and Bruno, M., Cytokinin signaling networks, Annu. Rev. Plant Biol., 2012, vol. 63, p. 353. https://doi.org/10.1146/annurev-arplant-042811-105503

    Article  CAS  PubMed  Google Scholar 

  15. Wysokin, H. and Grzegorczyk-Karolak, I., The effect of cytokinins on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina, Plant Cell, Tissue Organ Cult., 2015, vol. 122, p. 699. https://doi.org/10.1007/s11240-015-0804-5

    Article  CAS  Google Scholar 

  16. Booker, J., Chatfield, S., and Leyser, O., Auxin acts in xylem-associated or medullary cells to mediate apical dominance, Plant Cell, 2003, vol. 15, p. 495. https://doi.org/10.1105/tpc.007542.tion

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ibrahim, M.H., Jaafar, H.Z.E., Rahmat, A., and Rahman, Z.A., Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of kacip Fatimah (Labisia pumila Blume), Int. J. Mol. Sci., 2011, p. 5238. https://doi.org/10.3390/ijms12085238

  18. Li, H., Li, M., Lue, J., Cao, X., Qu, L., Gai, Y., Jiang, X., Liu, T., Bai, H., Janz, D., Polle, A., Changhui, P., and Bin Lue, Z., N-fertilization has different effects on the growth, carbon and nitrogen and physiology, and wood properties of slow- and fast-growing Populus species, J. Exp. Bot., 2012, 63, p. 1. https://doi.org/10.1093/jxb/err313

    Article  CAS  Google Scholar 

  19. Pal, P.K., Kumar, R., Guleria, V., Mahajan, M., Prasad, R., Pathania, V., Gill, B.S., Singh, D., Chand, G., Singh, B., and Singh, R.D., Crop-ecology and nutritional variability influence growth and secondary metabolites of Stevia rebaudiana Bertoni, BMC Plant Biol., 2015, p. 1. https://doi.org/10.1186/s12870-015-0457-x

  20. Uçar, E., Turgut, K., Özyiğit, Y., Özek, T., and Özek, G., The effect of different nitrogen levels on yield and quality of stevia (Stevia rebaudiana Bert.), J. Plant Nutr., 2018, vol. 41, p. 1130. https://doi.org/10.1080/01904167.2018.1431673

    Article  CAS  Google Scholar 

  21. Karimi, M. and Moradi, K., The response of stevia (Stevia rebaudiana Bertoni) to nitrogen supply under greenhouse condition, J. Plant Nutr., 2018, vol. 41, p. 1695. https://doi.org/10.1080/01904167.2018.1459692

    Article  CAS  Google Scholar 

  22. Kai, W., Fu, Y., Wang, J., Liang, B., Li, Q., and Leng, P., Functional analysis of SlNCED1 in pistil development and fruit set in tomato (Solanum lycopersicum L.), Sci. Rep., 2019, vol. 9, p. 1. https://doi.org/10.1038/s41598-019-52948-2

    Article  CAS  Google Scholar 

  23. Arkoun, M., Sarda, X., Jannin, L., Laine, P., Etienne, P., Garcia-Mina, J.-M., Yvin, J.-C., and Ourry, A., Hydroponics versus field lysimeter studies of urea, ammonium, and nitrate uptake by oilseed rape (Brassica napus L.), J. Exp. Bot., 2012, vol. 63, p. 5245. https://doi.org/10.1093/jxb/err313

    Article  CAS  PubMed  Google Scholar 

  24. Rashid, Z., Rashid, M., Inamullah, S., Rasool, S., and Bahar, F.A., Effect of different levels of farmyard manure and nitrogen on the yield and nitrogen uptake by stevia (Stevia rebaudiana Bertoni), Afr. J. Agric. Res., 2013, vol. 8, p. 3941. https://doi.org/10.5897/AJAR12.6813

    Article  Google Scholar 

  25. Yücesan, B., Büyükgöçmen, R., and Mohammed, A., An efficient regeneration system and steviol glycoside analysis of Stevia rebaudiana Bertoni, a source of natural high-intensity sweetener, In Vitro Cell. Dev. Biol.: Plant, 2016, p. 330. https://doi.org/10.1007/s11627-016-9765-6

  26. Lelandais, M. and Meyer, C., Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants, Plant Physiol., 2008, vol. 147, p. 1225. https://doi.org/10.1104/pp.108.119339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmad, M.A., Javed, R., Adeel, M., Rizwan, M., and Yang, Y., PEG 6000-stimulated drought stress improves the attributes of in vitro growth, steviol glycosides production, and antioxidant activities in Stevia rebaudiana bertoni, Plants, 2020, vol. 9, p. 1. https://doi.org/10.3390/plants9111552

    Article  CAS  Google Scholar 

  28. Kondhare, K.R., Hedden, P., Kettlewell, P.S., Farrell, A.D., and Monaghan, J.M., Use of the hormone-biosynthesis inhibitors fluridone and paclobutrazol to determine the effects of altered abscisic acid and gibberellin levels on pre-maturity α-amylase formation in wheat grains, J. Cereal Sci., 2014, vol. 60, p. 210. https://doi.org/10.1016/j.jcs.2014.03.001

    Article  CAS  Google Scholar 

  29. Rameau, C., Bertheloot, J., Leduc, N., Andrieu, B., Foucher, F., and Sakr, S., Multiple pathways regulate shoot branching, Front. Plant Sci., 2015, vol. 5, p. 1. https://doi.org/10.3389/fpls.2014.00741

    Article  Google Scholar 

  30. Yoneda, Y., Shimizu, H., Nakashima, H., Miyasaka, J., and Ohdoi, K., Effect of treatment with gibberellin, gibberellin biosynthesis inhibitor, and auxin on steviol glycoside content in Stevia rebaudiana Bertoni, Sugar Technol., 2018, vol. 20, p. 482. https://doi.org/10.1007/s12355-017-0561-3

    Article  Google Scholar 

  31. Emenecker, R.J., Auxin-abscisic acid interactions in plant growth and development, Biomolecules, 2020, vol. 10, p. 1. https://doi.org/10.3390/biom10020281

    Article  CAS  Google Scholar 

  32. Llanes, A., Andrade, A., Alemano, S., and Luna, V., Alterations of endogenous hormonal levels in plants under drought and salinity, Am. J. Plant Sci., 2016, vol. 7, p. 1357.

    Article  CAS  Google Scholar 

  33. Ceunen, S. and Geuns, J.M., Steviol glycosides: chemical diversity, metabolism, and function, J. Nat. Prod., 2013, vol. 76, p. 1201. https://doi.org/10.1021/np400203b

    Article  CAS  PubMed  Google Scholar 

  34. Akbari, F., Arminian, A., Kahrizi, D., Fazeli, A., and Ghaheri, M., Effect of nitrogen sources on gene expression of Stevia rebaudiana (Bertoni) under in vitro conditions, Cell. Mol. Biol., 2018, vol. 64, p. 11.

    Article  Google Scholar 

  35. Yang, Y., Wang, F., Wan, Q., and Ruan, J., Transcriptome analysis using RNA-Seq revealed the effects of nitrogen form on major secondary metabolite biosynthesis in tea (Camellia sinensis) plants, Acta Physiol. Plant., 2018, vol. 40, p. 1. https://doi.org/10.1007/s11738-018-2701-0

    Article  CAS  Google Scholar 

  36. Guleria, P. and Yadav, S.K., Agrobacterium mediated transient gene silencing (AMTS) in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway, PLoS One, 2013, vol. 8, p. e74731. https://doi.org/10.1371/journal.pone.0074731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Das, K., Dang, R., and Shivananda, T.N., Effect of N, P and K fertilizers on their availability in soil in relation to the stevia plant (Stevia rebaudiana Bert.), Arch. Agron. Soil Sci., 2006, vol. 52, p. 679. https://doi.org/10.1080/03650340601033233

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Agricultural Biotechnology Research Institute of Iran (ABRII) (grant no. 12-05-05-029-95027-950755).

Author information

Authors and Affiliations

Authors

Contributions

Hourieh Tavakoli Hasanaklou performed the experiment, analyzed the yield of steviol glycosides in Stevia plants, and analyzed the data. Nasibeh Tavakoli Hasanaklou and Hossein Hadavand Mirzaei assisted in the measurement of some metabolites traits. Ali Ebadi Khazineh Ghadim and Foad Moradi supervised and designed the experiment. Hourieh Tavakoli Hasanaklou prepared the manuscript. Foad Moradi improved the language and English writing of the entire manuscript. All authors gave final approval for its publication.

Corresponding author

Correspondence to F. Moradi.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Abbreviations: ABL—axillary bud leaves; Aux—auxin; BAP—6-benzylaminopurine; CK—cytokinin; SGs—steviol glycosides; DABs—developed axillary buds; Dul—dulcoside; LDW—leaf dry weight; PGRs—plant growth regulators; SDW—stem dry weight; Reb—rebaudioside; TDW—total dry weight.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli Hasanaklou, H., Ghadim, A.E., Moradi, F. et al. Morphological and Physiological Characteristics of Stevia rebaudiana Cultivated under Different Nitrogen Supplements and Growth Regulators. Russ J Plant Physiol 69, 49 (2022). https://doi.org/10.1134/S1021443722030141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722030141

Keywords:

Navigation