Skip to main content
Log in

Genetic markers of melanoma

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Melanoma is among the most aggressive malignancies. Tumors with a thickness of 4 mm can produce metastases, and the mean survival of the patients is 9 months. The review presents modern classification of the melanoma types based on cytological and morphological indices (Clark model). Alterations of genes in melanomas are discussed in detail. These genes include tumor suppressors, proliferative response genes (oncogenes), and transcription factors. Alterations in the Wnt signaling, MAPK cascade, and Fas signaling pathways are considered. Changes in the mismatch repair (MMR) genes are also analyzed. From practical perspective, understanding the genetic alterations provides identification of potential targets for therapeutic exposure and enables prognosis of the tumor response to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, A.J. and Mihm, M.C., Mechanisms of Disease: Melanoma, N. Engl. J. Med., 2006, vol. 355, pp. 51–65.

    Article  CAS  PubMed  Google Scholar 

  2. Eigentler, T. and Garbe, C., Malignant Melanoma: Classification and Staging of Malignant Melanoma, Front. Radiat. Theor. Oncol., 2006, vol. 39, pp. 149–158.

    Google Scholar 

  3. McGovern, V.J., Cochran, A.J., Van der Esch, E.P., et al., The Classification of Malignant Melanoma, Its Histological Reporting and Registration: A Revision of the 1972 Sydney Classification, Pathology, 1986, vol. 18, pp. 12–21.

    Article  CAS  PubMed  Google Scholar 

  4. McGovern, V.J., Mihm, M.C., Jr., Bailly, C., et al., The Classification of Malignant Melanoma and Its Histologic Reporting, Cancer, 1973, vol. 32, pp. 1446–1457.

    Article  CAS  PubMed  Google Scholar 

  5. Porras, B.H. and Cockerell, C.J., Cutaneous Malignant Melanoma: Classification and Clinical Diagnosis, Semin. Cutan. Med. Surg., 1997, vol. 16, pp. 88–96.

    Article  CAS  PubMed  Google Scholar 

  6. Balch, C.M., Soong, S.J., and Gershenwald, J., et al., Prognostic Factors Analysis of 17.600 Melanoma Patients: Validation of the American Joint Committee on Cancer Melanoma Staging System, J. Clin. Oncol., 2001, vol. 19, pp. 3622–3634.

    CAS  PubMed  Google Scholar 

  7. Halaban, R., Growth Factors and Melanomas, Semin. Oncol., 1996, vol. 23, pp. 673–681.

    CAS  PubMed  Google Scholar 

  8. Recio, J.A., Noonan, F.P., Takayama, H., et al., Ink4a/Arf Deficiency Promotes Ultraviolet Radiation-Induced Melanomagenesis, Cancer Res., 2002, vol. 62, pp. 6724–6730.

    CAS  PubMed  Google Scholar 

  9. Cui, R., Widlund, H.R., Feige, E., et al., Central Role of p53 in the Suntan Response and Pathologic Hyper-pigmentation, Cell, 2007, vol. 128, pp. 853–864.

    Article  CAS  PubMed  Google Scholar 

  10. Clark, W.H., Jr., Elder, D.E., Guerry, D.I., et al., Study of Tumor Progression: The Precursor Lesions of Superficial Spreading and Nodular Melanoma, Hum. Pathol., 1984, vol. 15, pp. 1147–1165.

    Article  PubMed  Google Scholar 

  11. Ramsey, M.R. and Sharpless, N.E., ROS as a Tumour Suppressor?, Nat. Cell Biol., 2006, vol. 8, pp. 1213–1215.

    Article  CAS  PubMed  Google Scholar 

  12. Ha, L., Merlino, G., and Sviderskaya, E.V., Melanomagenesis: Overcoming the Barrier of Melanocyte Senescence, Cell Cycle, 2008, vol. 7, pp. 1944–1948.

    CAS  PubMed  Google Scholar 

  13. Clark, W.H., Jr, From, L., Bernardino, E.A., and Mihm, M.C., The Histogenesis and Biological Behavior of Primary Human Malignant Melanomas of the Skin, Cancer Res., 1969, vol. 29, pp. 705–727.

    PubMed  Google Scholar 

  14. Hsu, M., Andl, T., Li, G., et al., Cadherin Repertoire Determines Partner-Specific Gap Junctional Communication during Melanoma Progression, J. Cell Sci., 2000, vol. 113, pp. 1535–1542.

    CAS  PubMed  Google Scholar 

  15. Bennett, D.C. and Medrano, E.E., Molecular Regulation of Melanocyte Senescence, Pigment Cell Res., 2002, vol. 15, pp. 242–250.

    Article  CAS  PubMed  Google Scholar 

  16. Walker, G.J., Flores, J.F., Glendening, J.M., et al., Virtually 100% of Melanoma Cell Lines Harbor Alterations at the DNA Level within CDKN2A, CDKN2B, or One of Their Downstream Targets, Genes Chromosomes Cancer, 1998, vol. 22, pp. 157–163.

    Article  CAS  PubMed  Google Scholar 

  17. Ohta, M., Berd, D., Shimizu, M., et al., Deletion Mapping of Chromosome Region 9p2 l-p22 Surrounding the CDKN2 Locus in Melanoma, Int. J. Cancer, 1996, vol. 65, pp. 762–767.

    Article  CAS  PubMed  Google Scholar 

  18. Monzon, J., Liu, L., Brill, H., et al., CDKN2A Mutations in Multiple Primary Melanomas, N. Engl. J. Med., 1998, vol. 338, pp. 879–887.

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Gomes, P., Bello, M.J., Alonso, M.E., et al., Promoter Methylation Status of Multiple Genes in Brain Metastases of Solid Tumors, Int. J. Mol. Med., 2004, vol. 13, pp. 93–98.

    Google Scholar 

  20. Flores, J.F., Walker, G.J., Glendening, J.M., et al., Loss of the p16INK4a and p15INK4b Genes, as well as Neighboring 9p21 Markers, in Sporadic Melanoma, Cancer Res., 1996, vol. 56, pp. 5023–5032.

    CAS  PubMed  Google Scholar 

  21. Ananthaswamy, H.N., Loughlin, S.M., and Cox, C., et al., Sunlight and Skin Cancer: Inhibition of p53 Mutations in UV-Irradiated Mouse Skin by Sunscreens, Nat. Med., 1997, vol. 3, pp. 510–514.

    Article  CAS  PubMed  Google Scholar 

  22. Costanzo, V, Robertson, K., Ying, C.Y., et al., Reconstitution of an ATMdependent Checkpoint That Inhibits Chromosomal DNA Replication Following DNA Damage, Mol. Cell, 2000, vol. 6, pp. 649–659.

    Article  CAS  PubMed  Google Scholar 

  23. Luca, M., Xie, S., Gutman, M., et al., Abnormalities in the CDKN2A (p16INK4/MTS-1) Gene in Human Melanoma Cells: Relevance to Tumor Growth and Metastasis, Oncogene, 1995, vol. 11, pp. 1399–1402.

    CAS  PubMed  Google Scholar 

  24. Freedberg, D.E., Rigas, S.H., Russak, J., et al., Frequent pl6-Independent Inactivation of p14ARF in Human Melanoma, J. Natl. Cancer. Inst., 2008, vol. 100, no. 11, pp. 784–795.

    Article  CAS  PubMed  Google Scholar 

  25. Stahl, J.M., Cheung, M., Sharma, A., et al., Loss of PTEN Promotes Tumor Development in Malignant Melanoma, CancerRes., 2003, vol. 63, pp. 2881–2890.

    CAS  Google Scholar 

  26. Wu, H., Goel, V., and Haluska, F.G., PTEN Signaling Pathways in Melanoma, Oncogene, 2003, vol. 22, pp. 3113–3122.

    Article  CAS  PubMed  Google Scholar 

  27. Bartkova, J., Horejsi, Z., Koed, K., et al., DNA Damage Response as a Candidate Anti-Cancer Barrier in Early Human Tumorigenesis, Nature, 2005, vol. 434, pp. 864–870.

    Article  CAS  PubMed  Google Scholar 

  28. Lubbe, J., Reiche, M., Burg, G., and Kleihues, P., Absence of p53 Gene Mutations in Cutaneous Melanoma, J. Invest. Dermatol., 1994, vol. 102, pp. 819–821.

    Article  CAS  PubMed  Google Scholar 

  29. Papp, T., Jafari, M., and Schiffmann, D., Lack of p53 Mutations and Loss of Heterozygosity in Non-Cultured Human Melanocytic Lesions, J. Cancer Res. Clin. Oncol., 1996, vol. 122, pp. 541–548.

    Article  CAS  PubMed  Google Scholar 

  30. Spatz, A., Giglia-Mari, G., Benhamou, S., and Sarasin, A., Association between DNA-Repair Deficiency and High Level of P53 Mutations in Melanoma of Xeroderma Pigmentosum Patients, CancerRes., 2001, vol. 61, pp. 2480–2486.

    CAS  Google Scholar 

  31. Tornaletti, S. and Pfeifer, G.P., Slow Repair of Pyrim-idine Dimmers at p53 Mutation Hotspots in Skin Cancer, Science, 1994, vol. 263, pp. 1436–1438.

    Article  CAS  PubMed  Google Scholar 

  32. Davies, H., Bignell, G.R., Cox, C., et al., Mutations of the BRAF Gene in Human Cancer, Nature, 2002, vol. 417, pp. 949–954.

    Article  CAS  PubMed  Google Scholar 

  33. Pollock, P.M., Harper, U.L., Hansen, K.S., et al., High Frequency of BRAF Mutations in Nevi, Nat. Genet., 2003, vol. 33, pp. 19–20.

    Article  CAS  PubMed  Google Scholar 

  34. Wellbrock, C., Ogilvie, L., Hedley, D., et al., V599E5-RAF Is an Oncogene in Melanocytes, Cancer Res., 2004, vol. 64, pp. 2338–2342.

    Article  CAS  PubMed  Google Scholar 

  35. Hingorani, S.R., Jacobetz, M.A., Robertson, G.P., et al., Suppression of BRAF(V599E) in Human Melanoma Abrogates Transformation, Cancer Res., 2003, vol. 63, pp. 5198–5202.

    CAS  PubMed  Google Scholar 

  36. Albino, A.P., Nanus, D.M., Mentle, I.R., et al., Analysis of ras Oncogenes in Malignant Melanoma and Precursor Lesions: Correlation of Pointmutations with Differentiation Phenotype, Oncogene, 1989, vol. 4, pp. 1363–1374.

    CAS  PubMed  Google Scholar 

  37. Barbacid, M., Ras Genes, Annu. Rev. Biochem., 1987, vol. 56, pp. 779–827.

    Article  CAS  PubMed  Google Scholar 

  38. Demunter, A., Stas, M., Degreef, H., et al., Analysis of N- and K-ras Mutations in the Distinctive Tumor Progression Phases of Melanoma, J. Invest. Dermatol., 2001, vol. 117, pp. 1483–1489.

    Article  CAS  PubMed  Google Scholar 

  39. Whitwam, T., Vanbrocklin, M.W., Russo, M.E., et al., Differential Oncogenic Potential of Activated RAS Isoforms in Melanocytes, Oncogene, 2007, vol. 26, pp. 4563–4570.

    Article  CAS  PubMed  Google Scholar 

  40. Chin, L., Pomerantz, J., Polsky, D., et al., Cooperative Effects of INK4a and ras in Melanoma Susceptibility in vivo, Genes Dev., 1997, vol. 11, pp. 2822–2834.

    Article  CAS  PubMed  Google Scholar 

  41. Chin, L., Tam, A., Pomerantz, J., et al., Essential Role for Oncogenic ras in Tumour Maintenance, Nature, 1999, vol. 400, pp. 468–472.

    Article  CAS  PubMed  Google Scholar 

  42. Grichnik, J.M., Kit and Melanocyte Migration, J. Invest. Dermatol., 2006, vol. 126, pp. 945–947.

    Article  CAS  PubMed  Google Scholar 

  43. Widlund, H.R. and Fisher, D.E., Microphthalamia-Associated Transcription Factor: A Critical Regulator of Pigment Cell Development and Survival, Oncogene, 2003, vol. 22, pp. 3035–3041.

    Article  CAS  PubMed  Google Scholar 

  44. Alexeev, V. and Yoon, K., Distinctive Role of the cKit Receptor Tyrosine Kinase Signaling in Mammalian Melanocytes, J. Invest. Dermatol., 2006, vol. 126, pp. 1102–1110.

    Article  CAS  PubMed  Google Scholar 

  45. Curtin, J.A., Busam, K., Pinkel, D., et al., Somatic Activation of KIT in Distinct Subtypes of Melanoma, J. Clin. Oncol., 2006, vol. 24, pp. 4340–4346.

    Article  CAS  PubMed  Google Scholar 

  46. Seoane, J., Le, H.V. and Massagué, J., Myc Suppression of the p21(Cip1) Cdk Inhibitor Influences the Outcome of the p53 Response to DNA Damage, Nature, 2002, vol. 419, pp. 729–734.

    Article  CAS  PubMed  Google Scholar 

  47. Koynova, D., Jordanova, E., Kukutsch, N., et al., Increased C-MYC Copy Numbers on the Background of CDKN2A Loss Is Associated with Improved Survival in Nodular Melanoma, J. Cancer Res. Clin. Oncol. 2007, vol. 133, no. 2, pp. 117–123.

    Article  CAS  PubMed  Google Scholar 

  48. Bennett, D.C., Human Melanocyte Senescence and Melanoma Susceptibility Genes, Oncogene, 2003, vol. 22, pp. 3063–3069.

    Article  CAS  PubMed  Google Scholar 

  49. Petti, C., Molla, A., Vegetti, C., et al., Coexpression of NRASQ61R and BRAFV600E in Human Melanoma Cells Activates Senescence and Increases Susceptibility to Cell-Mediated Cytotoxicity, Cancer Res., 2006, vol. 66, pp. 6503–6511.

    Article  CAS  PubMed  Google Scholar 

  50. Zhuang, D., Mannava, S., and Grachtchouk, et. al., C-MYC Overexpression Is Required for Continuous Suppression of Oncogene-Induced Senescence in Melanoma Cells, Oncogene, 2008, vol. 27, no. 52, pp. 6623–6634.

    Article  CAS  PubMed  Google Scholar 

  51. Christmann, M., Tomicic, M.T., Aasland, D., and Kaina, B., A Role for UViight-Induced c-Fos: Stimulation of Nucleotide Excision Repair and Protection against Sustained JNK Activation and Apoptosis, Carcinogenesis, 2007, vol. 28, no. 1, pp. 183–190.

    Article  CAS  PubMed  Google Scholar 

  52. Bergman, R., Kerner, H., Manov, L., and Friedman-Birnbaum, R., C-Fos Protein Expression in Spitz Nevi, Common Melanocytic Nevi, and Malignant Melanomas, Am. J. Dermatopathol., 1998, vol. 20, no. 3, pp. 262–265.

    Article  CAS  PubMed  Google Scholar 

  53. Guang-Wu, H., Sunagawa, M., Jie-En, L., et al., The Relationship between Microvessel Density, the Expression of Vascular Endothelial Growth Factor (VEGF), and the Extension of Nasopharyngeal Carcinoma, Laryngoscope, 2000, vol. 110, pp. 2066–2069.

    Article  CAS  PubMed  Google Scholar 

  54. Dvorak, H.F., Brown, L.F., Detmar, M., and Dvorak, A.M., Vascular Permeability Factor/Vascular Endothelial Growth Factor, Microvascular Hypermeability, and Angiogenesis, Am. J. Pathol., 1995, vol. 146, pp. 1029–1039.

    CAS  PubMed  Google Scholar 

  55. Yan, H., Marchettini, P., Acherman, Y.I., et al., Prognostic Assessment of Gastrointestinal Stromal Tumor, Am. J. Clin. Oncol., 2003, vol. 26, pp. 221–228.

    Article  PubMed  Google Scholar 

  56. Wan-Tzu Chen, Chih-Jen Huang, Ming-Tsang Wu, et al., HypoxiaJnducible Factor-la is Associated with Risk of Aggressive Behavior and Tumor Angiogenesis in Astrointestinal Stromal Tumor, Jpn. J. Clin. Oncol., 2005, vol. 35, no. 4, pp. 207–213.

    Article  Google Scholar 

  57. Takeda, K., Takemoto, C., Kobayashi, I., et al., Ser298 of MITF, a Mutation Site in Waardenburg Syndrome Type 2, Is a Phosphorylation Site with Functional Significance, Hum. Mol. Genet., 2000, vol. 9, pp. 125–132.

    Article  CAS  PubMed  Google Scholar 

  58. Hodgkinson, C.A., Moore, K.J., Nakayama, A., et al., Mutations at the Mousemicrophthalmia Locus Are Associated with Defects in a Gene Encoding a Novel Basic-Helix-Loop-Helix-Zipper Protein, Cell, 1993, vol. 74, pp. 395–404.

    Article  CAS  PubMed  Google Scholar 

  59. Steingrimsson, E., Copeland, N.G., and Jenkins, N.A., Melanocytes and the Microphthalmia Transcription Factor Network, Ann. Rev. Genet., 2004, vol. 38, pp. 365–411.

    Article  CAS  PubMed  Google Scholar 

  60. Nishimura, E.K.., Granter, S.R., and Fisher, D.E., Mechanisms of Hair Graying: Incomplete Melanocyte Stem Cell Maintenance in the Niche, Science, 2005, vol. 307, pp. 720–724.

    Article  CAS  PubMed  Google Scholar 

  61. Garraway, L.A., Widlund, H.R., Rubin, M.A., et al., Integrative Genomic Analyses Identify MITF as a Lineage Survival Oncogene Amplified in Malignant Melanoma, Nature, 2005, vol. 436, no. 7, pp. 117–122.

    Article  CAS  PubMed  Google Scholar 

  62. Garraway, L.A. and Sellers, W.R., Lineage Dependency and Lineage-Survival Oncogenes in Human Cancer, Nat. Rev. Cancer, 2006, vol. 6, no. 8, pp. 593–602.

    Article  CAS  PubMed  Google Scholar 

  63. King, R., Weilbaecher, K.N., McGill, G., et al., Microphthalmia Transcription Factor: A Sensitive and Specific Melanocyte Marker for Melanoma Diagnosis, Am. J. Pathol., 1999, vol. 155, pp. 731–738.

    CAS  PubMed  Google Scholar 

  64. Granter, S.R., Weilbaecher, K.N., Quigley, C., and Fisher, D.E., Role for Microphthalmia Transcription Factor in the Diagnosis of Metastatic Malignant Melanoma, Appl. Immunohistochem. Mol. Morphol., 2002, vol. 10, pp. 47–51.

    Article  PubMed  Google Scholar 

  65. Demunter, A., Libbrecht, L., Degreef, H., et al., Loss of Membranous Expression of Beta-Catenin Is Associated with Tumor Progression in Cutaneous Melanoma and Rarely Caused by Exon 3 Mutations, Mod. Pathol., 2002, vol. 15, pp. 454–461.

    Article  PubMed  Google Scholar 

  66. Omholt, K., Platz, A., Ringborg, U., and Hansson, J., Cytoplasmic and Nuclear Accumulation of Betacate-nin Is Rarely Caused by CTNNB1 Exon 3 Mutations in Cutaneous Malignant Melanoma, Int. J. Cancer, 2001, vol. 92, pp. 839–842.

    Article  CAS  PubMed  Google Scholar 

  67. Rubinfeld, B., Robbins, P., El-Gamil, M., et al., Stabilization of Beta-Catenin by Genetic Defects in Melanoma Cell Lines, Science, 1997, vol. 275, pp. 1790–1802.

    Article  CAS  PubMed  Google Scholar 

  68. Pollock, P.M. and Hayward, N., Mutations in Exon 3 of the Beta-Catenin Gene Are Rare in Melanoma Cell Lines, Melanoma Res., 2002, vol. 12, pp. 183–186.

    Article  CAS  PubMed  Google Scholar 

  69. Worm, J., Christensen, C., Gronb, K., et al., Genetic and Epigenetic Alterations of the APC Gene in Malignant Melanoma, Oncogene, 2004, vol. 23, pp. 5215–5226.

    Article  CAS  PubMed  Google Scholar 

  70. Castiglia, D., Bernardini, S., Alvino, E., et al., Concomitant Activation of Wnt Pathway and Loss of Mismatch Repair Function in Human Melanoma, Genes Chromosomes Cancer, 2008, vol. 47, pp. 614–624.

    Article  CAS  PubMed  Google Scholar 

  71. Trauth, B.C., Klas, C., Peter, A.M., etal., Monoclonal Antibody-Mediated Tumor Regression by Induction of Apoptosis, Science, 1989, vol. 245, pp. 301–305.

    Article  CAS  PubMed  Google Scholar 

  72. Tanaka, M., Suda, T., Takahashi, T., and Nagata, S., Expression of the Functional Soluble Form of Human Fas Ligand in Activated Lymphocytes, EMBOJ., 1995, vol. 14, pp. 1129–1135.

    CAS  Google Scholar 

  73. Schneider, P., Holler, N., Bodmer, J.L., et al., Conversion of Membrane-Bound Fas(CD95) Ligand to Its Soluble Form Is Associated with Downregulation of Its Proapoptotic Activity and Loss of Liver Toxicity, J. Exp. Med., 1998, vol. 187, pp. 1205–1213.

    Article  CAS  PubMed  Google Scholar 

  74. Peter, M.E. and Krammer, PH., The CD95 (APO-1/Fas) DISC and Beyond, Cell Death Differ., 2003, vol. 10, pp. 26–35.

    Article  CAS  PubMed  Google Scholar 

  75. Fulda, S., Sieverts, H., Friesen, C., et al., The CD95 (APO-LIFas) System Mediates Drug-Induced Apoptosis in Neuroblastoma Cells, Cancer Res., 1997, vol. 57, pp. 3823–3829.

    CAS  PubMed  Google Scholar 

  76. Friesen, C, Herr, I., Krammer, PH., and Debatin, K-M., Involvement of the CD95 (APO-L/Fas) Receptor-Ligand System in Drug-Induced Apoptosis in Leukemia Cells, Nat. Med., 1996, vol. 2, pp. 574–577.

    Article  CAS  PubMed  Google Scholar 

  77. Ivanov, V.N., Ronai, Z., and Hei, T.K., Opposite Roles of FAP-1 and Dynamin in the Regulation of Fas (CD95) Translocation to the Cell Surface and Susceptibility to Fas Ligand-Mediated Apoptosis, J. Biol. Chem., 2006, vol. 281, pp. 1840–1852.

    Article  CAS  PubMed  Google Scholar 

  78. Jackson, C.E. and Puck, J.M., Autoimmune Lym-phoproliferative Syndrome, a Disorder of Apoptosis, Curr. Opin. Pediatr., 1999, vol. 11, pp. 521–527.

    Article  CAS  PubMed  Google Scholar 

  79. Fuchs, H., Posovszky, C., Lahr, G., et al., Residual CD95-Pathway Function in Children with Autoimmune Lymphoproliferative Syndrome Is Independent from Clinical State and Genotype of CD95 Mutation, Pediatr. Res., 2009, vol. 65, pp. 163–168.

    Article  CAS  PubMed  Google Scholar 

  80. Min Sun Shin, Won Sang Park, Su Young Kim, et al., Alterations of Fas (Apo-1/CD95) Gene in Cutaneous Malignant Melanoma, Am. J. Pathol., 1999, vol. 154, pp. 1785–1791.

    Google Scholar 

  81. Peter, M.E., Legembre, P., and Barnhart, B.C., Does CD95 Have Tumor Promoting Activities?, Biochim. Biophys. Acta, 2007, vol. 1775, pp. 233–234.

    CAS  Google Scholar 

  82. Legembre, P., Barnhart, B.C., Zheng, L., et al., Induction of Apoptosis and Activation of NF-kB by CD95 Require Different Signalling Thresholds, EMBO Reports, 2004, vol. 5, pp. 1084–1089.

    Article  CAS  PubMed  Google Scholar 

  83. Song, H.Y., Regnier, C.H., Kirschning, C.J., et al., Tumor Necrosis Factor (TNF)-Mediated Kinase Cascades: Bifurcation of Nuclear Factor Kappa B and c-jun N-Terminal Kinase (JNK/SAPK) Pathways at TNF Receptor-Associated Factor 2, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 9792–9796.

    Article  CAS  PubMed  Google Scholar 

  84. Arczewska, K.D. and Kusmierek, J.T., Bacterial DNA Repair Genes and Their Eukaryotic Homologues: 2. Role of Bacterial Mutator Gene Homologues in Human Disease. Overview of Nucleotide Pool Sanitization and Mismatch Repair Systems, Acta. Biochim. Pol., 2007, vol. 54, pp. 435–457.

    CAS  PubMed  Google Scholar 

  85. Tronov, V.A., Kramarenko, I. I., and Karpukhin, A.V., Colorectal Cancer: Repair Deficiency, Genome Instability, Resistance to Apoptosis, Evaluation of the Disease Risk, Vopr. Onkol., 2005, vol. 52, pp. 159–166.

    Google Scholar 

  86. Franchitto, A., Pichierri, P., Piergentili, R., et al., The Mammalian Mismatch Repair Protein MSH2 is Required for Correct MRE1 1 and RAD51 Relocaliza-tion and for Efficient Cell Cycle Arrest Induced by Ionizing Radiation in G2 Phase, Oncogene, 2003, vol. 22, pp. 2110–2120.

    Article  CAS  PubMed  Google Scholar 

  87. Mohindra, A., Hays, L.E., Phillips, E.N., et al., Defects in Homologous Recombination Repair in Mismatch-Repair-Deficient Tumor Cell Lines, Hum. Mol. Genet., 2002, vol. 11, pp. 2189–2200.

    Article  CAS  PubMed  Google Scholar 

  88. Xuan, Li. and Heyer, W.-D., Homologous Recombination in DNA Repair and DNA Damage Tolerance, Cell Res., 2008, vol. 18, pp. 99–113.

    Article  CAS  Google Scholar 

  89. Bignami, M., Os’Driscoll, M., Aquilina, G., and Karran, P., Unmasking a Killer: DNA O6-Methylguanine and the Cytotoxicity of Methylating Agents, Mutat. Res., 2000, vol. 462, pp. 71–82.

    Article  CAS  PubMed  Google Scholar 

  90. Ochs, K. and Kaina, B., Apoptosis Induced by DNA Damage O6-Methylguanine Is Bcl-2 and Caspase-9/3 Regulated and Fas/Caspase-8 Independent, Cancer Res., 2000, vol. 60, pp. 5815–5824.

    CAS  PubMed  Google Scholar 

  91. Tronov, V.A., Loginova, M.Yu., and Kramarenko, I.I., Methylnitrosourea as Challenge Mutagen in Assessment of the DNA Mismatch Repair (MMR) Activity: Association with some Types of Cancer, Russ. J. Genet., 2008, vol. 44, pp. 595–600.

    Article  CAS  Google Scholar 

  92. Ma, S., Egyhcozi, S., Ringborg, U., and Hansson, J., Immunohistochemical Analysis of DNA Mismatch Repair Protein and O6-Methylguanine-DNA Meth-yltransferase in Melanoma Metastases in Relation to Clinical Response to DTIC-Based Chemotherapy, Oncol. Rep., 2002, vol. 9, pp. 1015–1019.

    CAS  PubMed  Google Scholar 

  93. Shpitz, B., Klein, E., Malinger, P., et al., Altered Expression of the DNA Mismatch Repair Proteins hMLH1 and hMSH2 in Cutaneous Dysplastic Nevi and Malignant Melanoma, Int. J. Biol. Markers, 2005, vol. 20, pp. 65–68.

    CAS  PubMed  Google Scholar 

  94. Garcia, J.J., Kramer, M.J., Os’Donnell, R.J., and Horvai, A.E., Mismatch Repair Protein Expression and Microsatellite Instability: A Comparison of Clear Cell Sarcoma of Soft Parts and Metastatic Melanoma, Mod. Pathol., 2006, vol. 19, pp. 950–957.

    Article  CAS  PubMed  Google Scholar 

  95. Kohonen-Corish, M.R.J., Cooper, W.A., Saab, J., et al., Promoter Hypermethylation of the O6-Meth-ylguanine DNA Methyltransferase Gene and Microsatellite Instability in Metastatic Melanoma, J. Inves-tig. Dermat., 2006, vol. 126, pp. 167–171.

    Article  CAS  Google Scholar 

  96. Yoshimoto, Y., Augustine, C.K., Yoo, J.S., et al., Defining Regional Infusion Treatment Strategies for Extremity Melanoma: Comparative Analysis of Mel-phalan and Temozolomide as Regional Chemothera-peutic Agents, Mol. Cancer Ther., 2007, vol. 6, pp. 1492–500.

    Article  CAS  PubMed  Google Scholar 

  97. Naumann, S.C., Roos, W.P., Jost, E., et al., Temozolomide- and Fotemustine-Induced Apoptosis in Human Malignant Melanoma Cells: Response Related to MGMT, MMR, DSBs, and p53, British J. Cancer, 2009, vol. 100, pp. 322–333.

    Article  CAS  Google Scholar 

  98. Beranek, D.T., Distribution of Methyl and Ethyl Adducts Following Alkylation with Monofunctional Alkylating Agents, Mutat. Res., 1990, vol. 231, pp. 11–30.

    CAS  PubMed  Google Scholar 

  99. Sobol, R.W, Watson, D.E., Nakamura, J., et al., Mutations Associated with Base Excision Repair Deficiency and Methylation-Induced Genotoxic Stress, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 6860–6865.

    Article  CAS  PubMed  Google Scholar 

  100. Trivedi, R.N., Almeida, K.H., Fornsaglio, J.L., et al., The Role of Base Excision Repair in the Sensitivity and Resistance to Temozolomide-Mediated Cell Death, Cancer Res., 2005, vol. 65, pp. 6394–6400.

    Article  CAS  PubMed  Google Scholar 

  101. Liu, L., Taverna, P., Whitacre, CM., et al., Pharmacologic Disruption of Base Excision Repair Sensitizes Mismatch Repair-Deficient and- Proficient Colon Cancer Cells to Methylating Agents, Clin. Cancer Res., 1999, vol. 5, pp. 2908–2917.

    CAS  PubMed  Google Scholar 

  102. Bucci, B., D’Agnano, I., Amendola, D., et al., Myc Down-Regulation Sensitizes Melanoma Cells to Radiotherapy by Inhibiting MLH1 and MSH2 Mismatch Repair Proteins, Clin. Cancer Res., 2005, vol. 11, pp. 2756–2767.

    Article  CAS  PubMed  Google Scholar 

  103. Nadin, S.B., Vargas-Roig, L.M., Drago, G., et al., DNA Damage and Repair in Peripheral Blood Lymphocytes from Healthy Individuals and Cancer Patients: A Pilot Study on the Implications in the Clinical Response to Chemotherapy, Cancer Lett., 2006, vol. 239, pp. 84–97.

    Article  CAS  PubMed  Google Scholar 

  104. Tronov, V.A., Kramarenko, I. I., Kozlova, A.D., et al., Sensitivity of Human Lymphocytes to Genotoxic Effect of N-Methyl-N-Nitrosourea: Possible Relation to Gynecological Cancers, Exp. Oncol., 2006, vol. 28, pp. 1–4.

    Google Scholar 

  105. Tarasov, V.A., Aslanyan, M.M., Tsyrendorzhieva, E.S., et al., Population Genetic Analysis of the Association between the BRCA1 and P53 Gene Polymorphisms and the Risk of Sporadic Breast Cancer, Russ. J. Genet., 2005, vol. 41, pp. 1115–1124.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tronov.

Additional information

Original Russian Text © V.A. Tronov, D.N. Artamonov, L.B. Gorbacheva, 2010, published in Genetika, 2010, Vol. 46, No. 2, pp. 168–179.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tronov, V.A., Artamonov, D.N. & Gorbacheva, L.B. Genetic markers of melanoma. Russ J Genet 46, 146–156 (2010). https://doi.org/10.1134/S1022795410020031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795410020031

Keywords

Navigation