Skip to main content
Log in

Inverted meiosis and its place in the evolution of sexual reproduction pathways

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malheiros, N., Castro, D., and Câmara, A., Cromosomas sem centrómero localizado: o caso de Luzula purpurea Link., Agron. Lusit., 1947, vol. 9, pp. 51–73.

    Google Scholar 

  2. Hughes-Schraeder, S., Cytology of coccids (Coccoidea—Homoptera), Adv. Genet., 1948, vol. 2, pp. 127–203.

    Article  Google Scholar 

  3. Rhoades, M.M., Meiosis, in The Cell, Brachet, J. and Mirsky, A.E., Eds., vol. 3: Mitosis and Meiosis, New York: Acad. Press, 1961, pp. 1–76.

    Google Scholar 

  4. John, B., Meiosis, Cambridge Cambridge Univ. Press, 1990.

    Book  Google Scholar 

  5. Cabral, G., Marques, A., Schubert, V., et al., Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes, Nat. Commun., 2014. doi 10.1038/ncomms6070

    Google Scholar 

  6. Heckman, S., Jankowska, M., Schubert, V., et al., Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans, Nat. Commun., 2014. doi 10.1038/ncomms5979

    Google Scholar 

  7. Li, W. and Zeng, G.-Ch., A resurgent phoenix—a hypothesis for the origin of meiosis, IUBMB Life, 2002, vol. 54, pp. 9–12. doi 10.1080/15216540290106413

    Article  PubMed  Google Scholar 

  8. Wilkins, A.S. and Holliday, R., The evolution of meiosis from mitosis, Genetics, 2009, vol. 181, pp. 3–12. doi 10.1534/genetics.108.099762

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marcon, E. and Moens, H.B., The evolution of meiosis: recruitment and modification of somatic DNArepair proteins, BioEssay, 2005, vol. 27, pp. 795–808.

    Article  CAS  Google Scholar 

  10. Anuradha, S. and Muniyappa, K., Molecular aspects of meiotic chromosome synapsis and recombination, Prog. Nucl. Acid Res. Mol. Biol., 2005, vol. 79, pp. 49–132. doi 10.1016/S0079-6603(4)79002-9

    Article  CAS  Google Scholar 

  11. Bogdanov, Yu.F., Grishaeva, T.M., and Dadashev, S.Ya., Similarity of the domain structure of proteins as a basis for the evolutionarily conservation of meiosis, Int. Rev. Cytol., 2007, vol. 257, pp. 83–142.

    Article  CAS  PubMed  Google Scholar 

  12. Egel, R. and Penny, D., On the origin of meiosis in eukaryotic evolution: coevolution of meiosis and mitosis from feeble beginnings, in Genome Dynamics and Stability, vol. 3: Recombination and Meiosis, Egel, R. and Lankenau, D.-H., Eds., Berlin: Springer-Verlag, 2007, pp. 249–288.

    Google Scholar 

  13. Grishaeva, T.M. and Bogdanov, Yu.F., Conservation and variability of synaptonemal complex proteins in phylogenesis of eukaryotes, Int. J. Evol. Biol., 2014, article ID 856230. doi 10.1155/2014/856230

    Google Scholar 

  14. Anderson, L.K., Offenberg, H.H., Verkuijilen, W.M.H.C., and Heyting, C., Rec-A-like proteins are components of the meiotic nodules in lily, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 6868–6973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trelles-Sticken, E., Dresse, M.E., and Scherthan, H., Meiotic telomere protein Ndj1 is required for meiosisspecific telomere distribution, bouquet formation and efficient homolog pairing, J. Cell Biol., 2000, vol. 151, p. 106.

  16. Lichten, M., Meiotic recombination: breaking the genome to save it, Curr. Biol., 2001, vol. 11, pp. R253–R256.

    Article  CAS  PubMed  Google Scholar 

  17. Shinohara, A. and Shinohara, M., Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination, Cytogen. Genome Res., 2004, vol. 107, pp. 201–207.

    Article  CAS  Google Scholar 

  18. Börner, G.V., Kleckner, N. and Hunter, N., Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis, Cell, 2004, vol. 117, pp. 29–45.

    Article  PubMed  Google Scholar 

  19. Anderson, L.K., Royer, S.M., Page, S.L., et al., Juxtaposition of C(2)M and the transversal filament protein C(3)G within the central element of Drosophila synaptonemal complex, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 4482–4487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerton, J. and Hawley, R.S., Homologous chromosome interactions in meiosis: diversity amidst conservation, Nat. Rev. Genet., 2005, vol. 6, pp. 477–487.

    Article  CAS  PubMed  Google Scholar 

  21. Zickler, D. and Kleckner, N., Recombination, pairing and synapsis of homologs during meiosis, Cold Spring Harbor Perspect. Biol., 2015, pp. 1–26. doi 10.110/cshperspecta016626

    Google Scholar 

  22. Grishaeva, T.M. and Bogdanov, Yu.F., Genetic control of meiosis in Drosophila, Russ. J. Genet., 2000, vol. 36, no. 10, pp. 1089–1106.

    CAS  Google Scholar 

  23. Golubovskaya, I.N., Hammer, O., Timofeeva, L.P., et al., Alleles of afd1 dissect REC8 functions during meiotic prophase I, J. Cell Sci., 2006, vol. 119, pp. 3306–3315.

    Article  CAS  PubMed  Google Scholar 

  24. Torgasheva, A.A., Rubtsov, N.B., and Borodin, P.M., Recombination and synaptic adjustment in oocytes of mice heterozygous for a large paracentric inversion, Chromosome Res., 2013, vol. 21, pp. 37–48.

    Article  CAS  PubMed  Google Scholar 

  25. Raikov, I.B., Meiosis in protists: recent advances and persisting problems, Eur. J. Protistol., 1995, vol. 31, pp. 1–7.

    Article  Google Scholar 

  26. Seravin, D.N. and Gudkov, A.V., Agamnye sliyaniya protistov i proiskhozhdenie polovogo protsessa (Agamic Fusion of Protists and the Origin of Sexual Process), St. Petersburg, 1999.

    Google Scholar 

  27. Solari, A.J., Primitive forms of meiosis: the possible evolution of meiosis, Biocell, 2002, vol. 26, no. 1, pp. 1–13.

    PubMed  Google Scholar 

  28. Cavalier-Smith, T., Origins of the machinery of recombination and sex, Heredity, 2000, vol. 88, pp. 125–141.

    Article  Google Scholar 

  29. Bogdanov, Yu.F., Variation and evolution of meiosis, Russ. J. Genet., 2003, vol. 39, no. 4, pp. 369–381.

    Article  Google Scholar 

  30. Bogdanov, Yu.F., Similarity of domain organization of proteins in phylogenetically distant organisms as a basis of meiosis conservatism, Russ. J. Dev. Biol., 2004, vol. 35, no. 6, pp. 337–345.

    Article  CAS  Google Scholar 

  31. Bogdanov, Yu.F., Evolution of meiosis of unicellulate and multicellular eukaryotes: aromorphosis at the cellular level, Zh. Obshch. Biol., 2008, vol. 69, no. 2, pp. 102–117.

    PubMed  Google Scholar 

  32. Grishaeva, T.M. and Bogdanov, Yu.F., On the origin of synaptonemal complex proteins: search for related proteins in proteomes of algae, lower fungi, mosses, and protozoa, Russ. J. Genet.: Appl. Res., 2013, vol. 3, no. 6, pp. 481–486.

    Article  Google Scholar 

  33. Comings, D.E. and Okada, T., Holocentric chromosomes in Oncopeltus: kinetochore plates are present in mitosis but absent in meiosis, Chromosoma, 1972, vol. 37, pp. 177–192.

    Article  CAS  PubMed  Google Scholar 

  34. Rog, O. and Dernburg, A.E., Chromosome pairing and synapsis during Caenorhabditis elegans meiosis, Curr. Opin. Cell Biol., 2013, vol. 25, pp. 349–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lui, D.Y., and Colaiacóvo, M.P., Meiotic development in Caenorhabditis elegans, Adv. Exp. Mol. Biol., 2013, vol. 757, pp. 133–170.

    Article  Google Scholar 

  36. Rasmussen, S.W., The transformation of the synaptonemal complex into “elimination chromatin” in Bombyx mori oocytes, Chromosoma, 1977, vol. 60, pp. 205–221.

    Article  CAS  PubMed  Google Scholar 

  37. Rasmussen, S.W. and Holm, P.B., Chromosome pairing, recombination nodules, and chiasma formation in diploid Bombyx mori male, Carlsberg Res. Commun., 1980, vol. 45, pp. 483–548.

    Google Scholar 

  38. Traut, W., A study of recombination, formation of chiasmata and synaptonemal complexes in female and male meiosis of Ephestia kuehniella (Lepidoptera), Genetics, 1977, vol. 47, pp. 135–142.

    Google Scholar 

  39. Kuznetsova, V.G. and Grozeva, S., Achiasmatic meiosis: a review, Inf. Vestn. Vavilovskogo O-va Genet. Sel., 2010, vol. 14, no. 1, pp. 79–88.

    Google Scholar 

  40. Nordenskiöld, H., Study of meiosis in Luzula purpurea, Hereditas, 1962, vol. 48, pp. 503–513.

    Article  Google Scholar 

  41. Nordenskiöld, H., A study of meiosis in the progeny of X-irradiated Luzula purpurea, Hereditas, 1963, vol. 49, pp. 33–47.

    Article  Google Scholar 

  42. Bongiorni, S., Florenzo, P., Pippoletti, D., and Prantera, G., Inverted meiosis and meiotic drive in mealybugs, Chromosoma, 2004, vol. 112, pp. 332–342. doi 10.1007/s00412-004-0278-4

    Article  Google Scholar 

  43. Srinivasan, D.G., Fenton, B., Jaubert-Possamai, S., and Jaouannet, M., Analysis of meiosis and cell cycle genes of the facultatively asexual pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae), Insect. Mol. Biol., 2010, vol. 19, suppl. 2, pp. 229–239. doi 10.1111/j.1365–2583.2009.00960x. PMID: 20482653.

    CAS  PubMed  Google Scholar 

  44. Srinivasan, D.G., Abdelhady, A., and Stern, D.L., Gene expression analysis of parthenogenetic embryonic development of the pea aphid, Acyrthosiphon pisum, suggests that aphid parthenogenesis evolved from meiotic oogenesis, PLoS One, 2014, vol. 9, no. 12. e115099. doi 10.1371/journalpone.0115099. eCollection 2014.

    Google Scholar 

  45. Grozeva, S., Nokkala, S., and Smirnov, N., First evidence of chromosome pre-reduction in male meiosis in the Miridae bugs (Heteroptera), Folia Boil. (Krakow.), 2006, vol. 54, pp. 9–12.

    Article  Google Scholar 

  46. Viera, A., Page, J., and Rufas, J.S., Inverted meiosis: the true bugs as a model to study, in Genome Dynamics, Benavente, R. and Volff, J.-N., Eds., Basel: Karger, 2009, vol. 5, pp. 137–156.

    Article  CAS  Google Scholar 

  47. Grishaeva, T.M., Kulichenko, D.A., and Bogdanov, Yu.F., Comparative conservatism of different shugoshin groups—chromatid cohesion protectors in eukaryotes: scientific review, in Proceedings of International Scientific Conference, (Karlovy Vary–Moscow, May 29–30, 2015), Karlovy Vary: Sklen ny -M stek, 2015, pp. 11–21.

    Google Scholar 

  48. Kitajima, T.S., Kawashima, S.A., and Watanabe, Y., The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis, Nature, 2004, vol. 427, pp. 510–517.

    Article  CAS  PubMed  Google Scholar 

  49. Watanabe, Y., Shugoshin: guardian spirit at the centromere, Curr. Opin. Cell Biol., 2005, vol. 17, pp. 590–595.

    Article  CAS  PubMed  Google Scholar 

  50. Peters, J.M., Tedeschi, A., and Schmitz, J., The cohesin complex and its roles in chromosome biology, Genes Dev., 2008, vol. 22, pp. 3089–3114.

    Article  CAS  PubMed  Google Scholar 

  51. Gutierrez-Caballero, C., Cebollero, L.R., and Pendas, A.M., Shugoshins: from protectors of cohesion to versatile adaptors at the centromere, Trends Genet., 2012, vol. 28, pp. 351–360.

    Article  CAS  PubMed  Google Scholar 

  52. Zamariola, L., De Storme, N., Vannerum, K., et al., SHUGOSHINs and PATRONUS protect meiotic centromere cohesion in Arabidopsis thaliana, Plant J., 2014, vol. 77, pp. 782–794.

    Article  CAS  PubMed  Google Scholar 

  53. Grishaeva, T.M., Dadashev, S.Ya., and Bogdanov, Yu.F., Meiotic Rec8 cohesins and their mitotic Rad21 orthologs: comparison in silico, Mol. Biol. (Moscow), 2007, vol. 41, no. 4, pp. 674–676.

    Article  CAS  Google Scholar 

  54. Murrey, A.W. and Szostack, J.W., Chromosome segregation in mitosis and meiosis, Annu. Rev. Cell Biol., 1985, vol. 1, pp. 289–315.

    Article  Google Scholar 

  55. Wrensch, D.L., Kethley, J.B., and Norton, R.A., Cytogenetics of holokinetic chromosomes and inverted meiosis: keys to the evolutionary success of mites, with generalizations on eukaryotes, in Mites: Ecological and Evolutionary Analyses of Life History Patterns, Houck, M.A., Ed., New York: Chapman and Hall, 1993, pp. 282–343.

    Google Scholar 

  56. Kolomiets, O.L., Atsaeva, M.M., Dadashev, S.Ya., S.K. Abilev, V.E. Spangenberg, and S.N. Matveevsky, Damage to synaptonemal complex structure and peculiarities of selection of mouse spermatocytes I at response to drug administration, Russ. J. Genet., 2013, vol. 49, no. 11, pp. 1098–1106.

    Article  CAS  Google Scholar 

  57. Mikhailova, E.I., Lovtsyus, A.V., and Sosnikhina, S.P., Some features of meiosis key events in rye and its synaptic mutants, Russ. J. Genet., 2010, vol. 46, no. 10, pp. 1210–1213.

    Article  CAS  Google Scholar 

  58. Simanovskii, S.A., Matveevskii, S.N., Iordanskaya, I.V., et al., Spiral cores of synaptonemal complex lateral elements at the diplotene stage in rye include the ASY1 protein, Russ. J. Genet., 2014, vol. 50, no. 10, pp. 1107–1111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Bogdanov.

Additional information

Original Russian Text © Yu.F. Bogdanov, 2016, published in Genetika, 2016, Vol. 52, No. 5, pp. 541–560.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, Y.F. Inverted meiosis and its place in the evolution of sexual reproduction pathways. Russ J Genet 52, 473–490 (2016). https://doi.org/10.1134/S1022795416050033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416050033

Keywords

Navigation