Skip to main content
Log in

Molecular genetic analysis of collection of transgenic tobacco plants with buckwheat serine proteases inhibitor gene during long-term subculture

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In this paper, the results of long-term screening of independently derived transgenic tobacco plants carrying the synthetic BWI-1a gene of serine proteases inhibitor from buckwheat are presented. For several years periodic spot checks of persistence and expression of the heterologous protective genes in vegetatively cloned collections and seeds of transgenic plants were conducted. The persistence of expression of the target gene after ten years of passage of plants in aseptic culture without selective pressure in their seed progeny for at least three generations and derived callus was shown. Extracts of tissues of all the variants of transgenic plants inhibited the growth of phytopathogenic bacteria and the germination of spores of fungi. The degree of the suppression of a pathogen in this case was hardly reduced. In the second seed generation, the number of defective seeds increased and there was a sharp decline of germination ability of the seeds even in nonselective conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charity, J.A., Hughes, P., Anderson, M.A., et al., Pest and disease protection conferred by expression of barley β-hordothionin and Nicotiana alata proteinase inhibitor genes in transgenic tobacco, Funct. Plant Biol., 2005, vol. 32, pp. 35–44.

    Article  CAS  Google Scholar 

  2. Girijashankar, H.C., Sharma, K.K., Sharma, V., et al., Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus), Plant Cell Rep., 2005, vol. 24, pp. 513–522. doi 10.1007/s00299-005-0947-7

    Article  CAS  PubMed  Google Scholar 

  3. Ntu, V.O., Azadi, P., Thirukkumaran, G., et al., Increased resistance to fusarium wilt in transgenic tobacco lines co-expressing chitinase and wasabi defensin genes, Plant Pathol., 2011, vol. 60, pp. 221–231. doi 10.1111/j.1365-3059.2010.02352.x

    Article  Google Scholar 

  4. Lee, S.C. and Hwang, B.K., CASAR82A, a pathogeninduced pepper SAR8.2, exhibits an antifungal activity and its overexpression enhances disease resistance and stress tolerance, Plant Mol. Biol., 2006, vol. 61, pp. 95–109. doi 10.1007/s11103-005-6102-6

    Article  CAS  PubMed  Google Scholar 

  5. Cho, K.-C., Han, Y.-J., Kim, S.-J., et al., Resistance to Rhizoctonia solani AG-2-2 (IIIB) in creeping bentgrass plants transformed with pepper esterase gene PepEST, Plant Pathol., 2011, vol. 60, pp. 631–639. doi 10.1111/j.1365-3059.2011.02433.x

    Article  CAS  Google Scholar 

  6. Cunha, W.G., Tinoco, M.L.P., Pancoti, H.L., et al., High resistance to Sclerotinia sclerotiorum in transgenic soybean plants to express an oxalate decarboxylase gene, Plant Pathol., 2010, vol. 59, pp. 654–660. doi 10.1111/j.1365-3059.2010.02279.x

    Article  CAS  Google Scholar 

  7. Liu, H.B., Naeem, M.S., Liu, D., Zhu, Y.N., et al., Analyses and inheritance patterns and consistent expression of sporamin and chitinase PjChi-1 genes in Brassica napus, Plant Breed., 2011, vol. 130, pp. 345–351. doi 10.1111/j.1439-0523.2010.01827.x

    Article  CAS  Google Scholar 

  8. Risk, J.M., Selter, L.L., Chauhan, H., et al., The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley, Plant Biotechnol. J., 2013., vol. 11, pp. 847–854. doi 10.1111/pbi.12077

    Article  CAS  PubMed  Google Scholar 

  9. Cheng, W., Song, X.-S., Li, H.-P., et al., Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat, Plant Biotechnol. J., 2015, vol. 13, pp. 1335–1345. doi 10.1111/pbi.12352

    Article  CAS  PubMed  Google Scholar 

  10. Outchkourov, N.S., de Kogell, W.J., Wiegers, G.L., et al., Engineered multidomain cysteine protease inhibitors yield resistance against western flower thrips (Frankliniella occidentalis) in greenhouse trial, Plant Biotechnol. J., 2004, vol. 2, pp. 449–458. doi 10.1111/j.1467-7652.2004.00089.x

    Article  CAS  PubMed  Google Scholar 

  11. Popovic, M., Andjelkovic, U., Burazer, U., et al., Biochemical and immunological characterization of a recombinantly produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa), Phytochemistry, 2013, vol. 94, pp. 53–59.

    Article  CAS  PubMed  Google Scholar 

  12. Cunha, W.G., Tinoco, M.L.P., Pancoti, H.L., et al., High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene, Plant Pathol., 2010, vol. 59, pp. 654–660. doi 10.1111/j.1365-3059.2010.02279.x

    Article  CAS  Google Scholar 

  13. Khalf, M., Goulet, C., Vorster, J., et al., Tubers from potato lines expressing a tomato Kunitz protease inhibitor are substantially equivalent to parental and transgenic controls, Plant Biotechnol. J., 2010, vol. 8, pp. 155–169. doi 10.1111/j.1467-7652.2009.00471.x

    Article  CAS  PubMed  Google Scholar 

  14. Deineko, E.V., Novoselya, T.V., Zagorskaya, A.A., et al., Expression instability of the marker nptII gene in transgenic tobacco plants, Russ. J. Plant. Physiol., 2000, vol. 47, no. 3, pp. 394–399.

    CAS  Google Scholar 

  15. Marenkova (Novoselya), T.V. and Deineko, E.V., A change in the stability of marker nptII and uidA gene expression in transgenic tobacco plants, Russ. J. Genet., 2006, vol. 42, no. 5, pp. 518–525.

    Article  Google Scholar 

  16. Meng, L., Ziv, M., and Lemaux, P.G., Nature of stress and transgenic locus influences transgene expression stability in barley, Plant Mol. Biol., 2006, vol. 62, pp. 15–28. doi 10.1007/s11103-006-9000-7

    Article  CAS  PubMed  Google Scholar 

  17. Kishimoto, K., Nishizawa, Y., Tabei, Y., et al., Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea), Plant Sci., 2002, vol. 162, no. 5, pp. 655–662.

    Article  CAS  Google Scholar 

  18. Lee, S.-B., Li, B., Jin, S., and Daniell, H., Genetically pyramiding protease-inhibitor genes for dual broadspectrum resistance against insect and phytopathogens in transgenic tobacco, Plant Biotechnol. J., 2011, vol. 9, pp. 100–115. doi 10.1111/j.1467-7652.2010.00538.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao, C.-S., Kou, X.-J., Li, H.-P., et al., Inverse effects of Arabidopsis NPR1 gene on fusarium seedling blight and fusarium head blight in transgenic wheat, Plant Pathol., 2013, vol. 62, pp. 383–392. doi 10.1111/pbi.12077

    Article  CAS  Google Scholar 

  20. Gallie, D.R., Controlling gene expression in transgenics, Curr. Opin. Plant Biol., 1998, vol. 1, pp. 166–172.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, S., Hofius, D., Sonnewald, U., and Bornke, F., Temporal and spatial control of gene silencing in transgenic plants by inducible expression of double–stranded RNA, Plant J., 2003, vol. 36, pp. 731–740.

    Article  CAS  PubMed  Google Scholar 

  22. Dorokhov, Yu.L., Gene silencing in plants, Mol. Biol. (Moscow), 2007, vol. 41, no. 4, pp. 519–530. https://doi.org/10.1134/S0026893307040012.

    Article  CAS  Google Scholar 

  23. Gasanova, T.V., Skurat, E.V., Frolova, O.Yu., et al., Pectin methylesterase as a factor of plant transcriptome stability, Mol. Biol. (Moscow), 2008, vol. 42, pp. 421–429. https://doi.org/10.1134/S0026893308030102.

    Article  CAS  Google Scholar 

  24. Zare, B., Niazi, A., Sattari, R., et al., Resistance against rhizomania disease via RNA silencing in sugar beet, Plant Pathol., 2015, vol. 64, pp. 35–42. doi 10.1111/ppa.12239

    Article  CAS  Google Scholar 

  25. Wilson, A.K., Latham, J.R., and Steinbrecher, R.A., Transformation—induced mutations in transgenic plants: analysis and biosafety implications, Biotechnol. Genet. Eng. Rev., 2006, vol. 23, pp. 209–234.

    Article  CAS  PubMed  Google Scholar 

  26. Khadeeva, N.V., Kochieva, E.Z., Cherednichenko, M.Yu., et al., Use of buckwheat seed protease inhibitor gene for improvement of tobacco and potato plant resistance to biotic stress, Biochemistry (Moscow), 2009, vol. 74, no. 3, pp. 260–267. https://doi.org/10.1134/S000629- 7909030031.

    Article  CAS  Google Scholar 

  27. Belozersky, M.A., Dunaevsky, Y.E., Musolyamov, A.X., and Egorov, T.A., Complete amino acid sequence of the protease inhibitor from buckwheat seeds, FEBS Lett., 1995, vol. 371, pp. 264–266.

    Article  CAS  PubMed  Google Scholar 

  28. Khadeeva, N.V. and Yakovleva, E.Yu., Inheritance of marker and target genes in seed and vegetative progenies of transgenic tobacco plants carrying the buckwheat serine protease inhibitor gene, Russ. J. Genet., 2010, vol. 46, no. 1, pp. 50–56. https://doi.org/10.1134/S1022795410010084.

    Article  CAS  Google Scholar 

  29. Gamborg, O.L., Miller, R.A., and Ojima, K., Nutrient requirements of suspension cultures of Soybean root cells, Exp. Cell Res., 1968, vol. 50, no. 2, pp. 150–155.

    Google Scholar 

  30. Khadeeva, N.V., Yakovleva, E.Yu., Dunaevskii, Ya.E., and Belozerskii, M.A., Comparative analysis of tobacco and Arabidopsis insertional mutants, transformed with equal vector constructions, Russ. J. Genet., 2012, vol. 48, no. 2, pp. 170–178. https://doi.org/10.1134/S1022795412010097.

    Article  CAS  Google Scholar 

  31. Lebedeva, O.V., Sklyarova, O.A., and Ezhova, T.A., The roles of the NANA and LEPIDA genes in regulating the stem growth in Arabidopsis thaliana, Russ. J. Genet., 2004, vol. 40, no. 7, pp. 764–771. https://doi.org/10.1023/B:RUGE.0000036526.13587.a6.

    Article  CAS  Google Scholar 

  32. Clark, K.A. and Krysan, P.J., Chromosomal translocations are the common phenomenon in Arabidopsis thaliana T-DNA insertion lines, Plant J., 2010, vol. 64, pp. 990–1001. doi 10.1111/j.1365-313x.2010.04386.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deineko, E.V., Study of expression of heterologous and native genes in transgenic plants (exemplified by Nicotiana tabacum L.), Extended Abstract of Doctoral Dissertation, Institut Obshei Genetiki im. N.I. Vavilova, Moscow, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Khadeeva.

Additional information

Original Russian Text © N.V. Khadeeva, E.Yu. Yakovleva, K.V. Sydoruk, T.V. Korostyleva, E.A. Istomina, Ya.E. Dunaevsky, T.I. Odintsova, V.G. Bogush, M.A. Belozersky, 2017, published in Genetika, 2017, Vol. 53, No. 11, pp. 1285–1296.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadeeva, N.V., Yakovleva, E.Y., Sydoruk, K.V. et al. Molecular genetic analysis of collection of transgenic tobacco plants with buckwheat serine proteases inhibitor gene during long-term subculture. Russ J Genet 53, 1200–1210 (2017). https://doi.org/10.1134/S1022795417110047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417110047

Keywords

Navigation