Skip to main content
Log in

Molecular Phylogenetic Analysis of the Endemic Far Eastern Closely Related Oxytropis Species of Section Orobia (Fabaceae)

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The questions about the taxonomic status and phylogenetic relationships of the Far Eastern closely related species Oxytropis ochotensis, O. litoralis, O. erecta, O. ruthenica, and O. kunashiriensis of the section Orobia of the genus Oxytropis still remain unresolved. The study of the polymorphism of nucleotide sequences of the psbA–trnH, trnL–trnF, and trnS–trnG cpDNA intergenic spacers showed that populations of O. ochotensis and O. erecta are characterized by a low (0.378–0.495) haplotype (h) and a low (0.0006–0.0009) nucleotide (π) diversity, and in populations of O. ruthenica, h varies from 0.154 to 0.872 and π varies from 0.0002 to 0.0016. One O. ochotensis population from Magadan oblast and one O. ruthenica population from Russky Island (Primorsky krai) are monomorphic. Low nucleotide divergence of cpDNA between species O. ochotensis, O. erecta, and O. litoralis and also statistically insignificant genetic differentiation between them, the formation of a single haplogroup in the phylogenetic network, and the absence of species-specific molecular markers indicate the unity of their gene pool. A study of the ITS rDNA polymorphism revealed private ribotypes in O. ruthenica and O. kunashiriensis, the presence of a common ribotype in O. ochotensis, O. erecta, and O. litoralis, and the intraspecific polymorphism in O. ochotensis and O. erecta. The differences revealed in the chloroplast and nuclear genomes confirm the independence of O. ruthenica and O. kunashiriensis and suggest that O. erecta and O. litoralis are local phenotypes of the widespread polyploid species O. ochotensis. An analysis of the phylogenetic relationships of the cpDNA haplotypes showed a clear separation of O. ruthenica populations into two evolutionary lineages, but with a single ITS ribotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Shantser, I.A., Phylogeny and taxonomy of recently diverging groups using the example of the genus Rosa,Tr. Zool. Inst. Ross. Akad. Nauk, 2013, suppl. 2, pp. 202—216.

  2. Pinheiro, F., Dantas-Queiroz, M.V., and Palma-Silva, C., Plant species complexes as models to understand speciation and evolution: a review of South American studies, Crit. Rev. Plant Sci., 2018, vol. 37, no. 1, pp. 54—80. https://doi.org/10.1080/07352689.2018.1471565

    Article  Google Scholar 

  3. Pavlova, N.S., Legumes—Fabaceae, in Sosudistye rasteniya sovetskogo Dal’nego Vostoka (Vascular Plants of the Soviet Far East), Kharkevich, S.S., Ed., Leningrad: Nauka, 1989, vol. 4, pp. 191—339.

  4. Yurtsev, B.A., Oxytropis DC., in Arkticheskaya flora SSSR (Arctic Flora of the Soviet Union), Yurtsev, B.A., Ed., Leningrad: Nauka, 1986, no. 9, part 2, pp. 61—146.

  5. Yakubov, V.V. and Chernyagina, O.A., Katalog flory Kamchatki (sosudistye rasteniya) (Catalogue of the Flora of Kamchatka (Vascular Plants)), Petropavlovsk-Kamchatskii: Kamchatpress, 2004.

  6. Malyshev, L.I., Diversity of the genus Oxytropis in Asian Russia, Turczaninowia, 2008, vol. 11, no. 4, pp. 5—141.

    Google Scholar 

  7. Vasil’chenko, P.T., Fedchenko, B.A., and Shishkin, B.K., Rod 810: Oxytrope—Oxytropis DC., Flora SSSR (Flora of the Soviet Union), Shishkin, B.K. and Bobrov, E.G., Eds., Moscow: Akad. Nauk SSSR, 1948, vol. 13, pp. 1—229.

    Google Scholar 

  8. Voroshilov, V.N., Opredelitel’ rastenii sovetskogo Dal’nego Vostoka (The Guidebook to the Vascular Plants of the Soviet Far East), Tsitsin, N.V., Ed., Moscow: Nauka, 1982.

    Google Scholar 

  9. Malyshev, L.I., Phenetics and chorology of the section Orobia Bunge, genus Oxytropis DC. (Fabaceae) in the Asian part of Russia, Rastit. Mir Aziatsk. Ross., 2008, no. 1, pp. 3—9.

  10. Malyshev, L.I., Genus Oxytropis DC., in Konspekt flory Aziatskoi Rossii: sosudistye rasteniya (Synopsis of the Flora of Asian Russia: Vascular Plants), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2012, pp. 237—248.

    Google Scholar 

  11. Barkalov, V.Yu., Flora Kuril’skikh ostrovov (Flora of the Kuril Islands), Vladivostok: Dal’nauka, 2009.

  12. Zhukova, P.G., Chromosome numbers in some species of the Fabaceae family from northeast of Asia, Bot. Zh., 1983, vol. 68, no. 7, pp. 925—932.

    Google Scholar 

  13. Probatova, N.S., Khromosomnye chisla sosudistykh rastenii Primorskogo kraya (Chromosomal Numbers of Vascular Plants in the Primorsky Kray), Vladivostok: Dal’nauka, 2014.

  14. Bonasora, M.G., Lopez, A., Vaio, M., et al., Origins of polyploidy in Paspalum stellatum and related species (Poaceae, Panicoideae, Paspaleae) inferred from phylogenetic and cytogenetic analyses, Bot. J. Linn. Soc., 2018. V. 188, pp. 21—33. https://doi.org/10.1093/botlinnean/boy046

    Article  Google Scholar 

  15. Bolson, M., De Camargo Smidt, E., Brotto, M.L., and Silva-Pereira, V., ITS and trnH-psbA as efficient DNA barcodes to identify threatened commercial woody angiosperms from Southern Brazilian Atlantic rainforests, PLoS One, 2015, vol. 10, no. 12. e0143049. https://doi.org/10.1371/journal.pone.0143049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Artyukova, E.V., Kozyrenko, M.M., Kholina, A.B., and Zhuravlev, Yu.N., High chloroplast haplotype diversity in the endemic legume Oxytropis chankaensis may result from independent polyploidization events, Genetica, 2011, vol. 139, no. 2, pp. 221—232.

    Article  CAS  Google Scholar 

  17. Artyukova, E.V. and Kozyrenko, M.M., Phylogenetic relationships of Oxytropis chankaensis Jurtz. and Oxytropis oxyphylla (Pall.) DC. (Fabaceae) inferred from the data of sequencing of the ITS region of the nuclear ribosomal DNA operon and intergenic spacers of the chloroplast genome, Russ. J. Genet., 2012, vol. 48, no. 2, pp. 163—169. https://doi.org/10.1134/S1022795411110032

    Article  CAS  Google Scholar 

  18. Archambault, A. and Strömvik, M.V., Evolutionary relationships in Oxytropis species, as estimated from the nuclear ribosomal internal transcribed spacer (ITS) sequences point to multiple expansions into the Arctic, Botany, 2012, vol. 90, no. 8, pp. 770—779. https://doi.org/10.1139/B2012-023

    Article  CAS  Google Scholar 

  19. Gao, L., Lu, P., Jin, F., et al., TrnL-F sequences analysis and molecular phylogeny of 10 species of Oxytropis, Acta Bot. Boreali-Occidentalia Sin., 2013, no. 2, pp. 266—271.

  20. Tekpinar, A., Karaman Erkul, S., Aytac, Z., and Kaya, Z., Phylogenetic relationships between Oxytropis DC. and Astragalus L. species native to an Old World diversity center inferred from nuclear ribosomal ITS and plastid matK gene sequences, Turk. J. Biol., 2016, vol. 40, pp. 250—263. https://doi.org/10.3906/biy-1502-5

    Article  CAS  Google Scholar 

  21. Dizkirici Tekpinar, A., Karaman Erkul, S., Aytac, Z., and Kaya, Z., Phylogenetic relationships among native Oxytropis species in Turkey using trnL intron, trnL–F IGS, and trnV intron cpDNA regions, Turk. J. Bot., 2016, vol. 40, pp. 472—479. https://doi.org/10.3906/bot-1506-45

    Article  CAS  Google Scholar 

  22. Kholina, A.B., Kozyrenko, M.M., Artyukova, E.V., et al., Phylogenetic relationships of the species of Oxytropis DC. subg. Oxytropis and Phacoxytropis (Fabaceae) from Asian Russia inferred from the nucleotide sequence analysis of the intergenic spacers of the chloroplast genome, Russ. J. Genet., 2016, vol. 52, no. 8, pp. 780—793. https://doi.org/10.1134/S1022795416060065

    Article  CAS  Google Scholar 

  23. Shavvon, R.S., Kazempour-Osaloo, S., Maassoumi, A.A., et al., Increasing phylogenetic support for explosively radiating taxa: the promise of high-throughput sequencing for Oxytropis (Fabaceae), J. Syst. Evol., 2017, vol. 55, no. 4, pp. 385—404. https://doi.org/10.1111/jse.12269

    Article  Google Scholar 

  24. Kholina, A.B., Kozyrenko, M.M., Artyukova, E.V., and Sandalov, D.V., Modern state of populations of endemic Oxytropis species from Baikal Siberia and their phylogenetic relationships based on chloroplast DNA markers, Russ. J. Genet., 2018, vol. 54, no. 7, pp. 795—806.

    Article  Google Scholar 

  25. Kholina, A.B., Kozyrenko, M.M., Artyukova, E.V., et al., Plastid DNA variation of the endemic species Oxytropis glandulosa Turcz. (Fabaceae), Turk. J. Bot., 2018, vol. 42, pp. 38—50. https://doi.org/10.3906/bot-1706-11

    Article  CAS  Google Scholar 

  26. Artyukova, E.V., Kozyrenko, M.M., Kholina, A.B., and Zhuravlev, Y.N., Analysis of genetic variation in rare endemic species Oxytropis chankaensis Jurtz. (Fabaceae) using RAPD markers, Russ. J. Genet., 2004, vol. 40, no. 7, pp. 710—716. https://doi.org/10.1023/B:RUGE.0000036518.78118.df

    Article  CAS  Google Scholar 

  27. Bonfield, J.K., Smith, K.F., and Staden, R., A new DNA sequence assembly program, Nucleic Acids Res., 1995, vol. 23, pp. 4992—4999.

    Article  CAS  Google Scholar 

  28. Gouy, M., Guindon, S., and Gascuel, O., SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol. Biol. Evol., 2010, vol. 27, pp. 221—224. https://doi.org/10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  29. Excoffier, L. and Lischer, H.E.L., Arlequin Suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564—567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  30. Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, no. 11, pp. 1451—1452. https://doi.org/10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  31. Bandelt, H.-J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37—48.

    Article  CAS  Google Scholar 

  32. Mir, B.A., Koul, S., Kumar, A., et al., Intraspecific variation in the internal transcribed spacer (ITS) regions of rDNA in Withania somnifera (Linn.) Dunal, Indian J. Biotechnol., 2010, vol. 9, pp. 325—328.

    CAS  Google Scholar 

  33. Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods): Version 4.04, Sunderland: Sinauer Associates, 2003.

    Google Scholar 

  34. Wojciechowski, M.F., Sanderson, M.J., and Hu, J.-M., Evidence on the monophyly of Astragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNA trnL intron data, Syst. Bot., 1999, vol. 24, no. 3, pp. 409—437.

    Article  Google Scholar 

  35. Abramson, N.I., Phylogeography: results, current challenges, and prospects, Inf. Vestn. Vavilovskogo O-vaGenet. Sel., 2007, vol. 11, no. 2, pp. 307—331.

    Google Scholar 

  36. Riley, L., McGlaughlin, M.E., and Helenurm, K., Narrow water barriers prevent multiple colonizations and limit gene flow among California Channel Island wild buckwheats (Eriogonum: Polygonaceae), Bot. J. Linn. Soc., 2016, vol. 181, pp. 246—268.

    Article  Google Scholar 

  37. Bobo-Pinilla, J., Peñas de Giles, J., López-González, N., et al., Phylogeography of an endangered disjunct herb: long-distance dispersal, refugia and colonization routes, AoB Plants, 2018, vol. 10, no. 5. ply047. https://doi.org/10.1093/aobpla/ply047

    Article  PubMed  PubMed Central  Google Scholar 

  38. Velizhanin, A.G., Isolation time of the mainland islands of the North Pacific, Dokl. Akad. Nauk SSSR, 1976, vol. 231, no. 1, pp. 205—207.

    Google Scholar 

  39. Kholina, A.B., Kozyrenko, M.M., and Artyukova, E.V., DNA typing of Oxytropis DC. species, Regiony novogo osvoeniya: sovremennoe sostoyanie prirodnykh kompleksov i voprosy ikh okhrany (Regions of New Development: the Current State of Natural Complexes and Issues of Their Protection) (Proc. Ross. Conf. with Int. Participation), Khabarovsk: Institut Vodno-Ekologicheskikh Problem, Dal’nevostochnoe Otdelenie, Rossiiskaya Akademiya Nauk, 2015, pp. 106—109.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kholina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Kashevarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyrenko, M.M., Kholina, A.B., Artyukova, E.V. et al. Molecular Phylogenetic Analysis of the Endemic Far Eastern Closely Related Oxytropis Species of Section Orobia (Fabaceae). Russ J Genet 56, 429–440 (2020). https://doi.org/10.1134/S1022795420040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420040043

Keywords:

Navigation