Skip to main content
Log in

Electrocatalytic activity of dispersed platinum and silver alloys and manganese oxides for the oxygen reduction in alkaline electrolyte

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

This work reviews the studies conducted in this laboratory of the oxygen reduction reaction (ORR) on electrocatalysts formed by Pt-M/C (M = V, Cr, Co) and Ag-Pt/C alloys and on different Mn oxides (MnO/C, Mn3O4/C, MnO2/C) in KOH electrolyte. The physical and electronic properties of the materials are investigated by in situ XAS (x-ray absorption spectroscopy) in the XANES (x-ray absorption near edge structure) region. The electrocatalytic activity for the ORR on the different catalysts is compared through mass-transport-corrected Tafel plots. The XANES results for the Pt-M/C and Ag-Pt/C composites at high electrode potentials show lower vacancy of the Pt 5d band compared to pure Pt/C, while for the results indicate a chance of the Mn oxidation state as a function of the electrode potential. The electrochemical measurements evidence increased electrocatalytic activity of the Pt alloys compared to pure Pt and this is attributed to a lowering of the adsorption strength of adsorbed oxygen species caused by the reduced Pt reactivity. An activity enhancement of the Ag atoms on the Ag-Pt/C alloys compared to pure Ag is ascribed to an electronic effect induced by the presence of Pt, increasing the Ag-O adsorption strength. In the case of the MnyOx/C materials, the electrochemical results show low activity for MnO/C and higher activity for MnO2/C and Mn3O4/C. This is explained based on the activation for the ORR, which is higher for the material with higher MnO2 contents and the occurrence of a mediation processes involving the reduction of Mn(IV) to Mn(III), followed by the electron transfer of Mn(III) to oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toda, T., Igarashi, H., and Watanabe, M., J. Electroanal. Chem., 1999, vol. 460, p. 258.

    Article  CAS  Google Scholar 

  2. Min, M., Cho, J., Cho, K., and Kim, H., Electrochim. Acta, 2000, vol. 45, p. 4211.

    Article  CAS  Google Scholar 

  3. Arico, A.S., Shukla, A.K., Kim, H., Park, S., Min, M., and Antonucci, V., Appl. Surf. Sci., 2001, vol. 172, p. 33.

    Article  CAS  Google Scholar 

  4. Mukerjee, S., Srinivasan, S., Soriaga, M.P., and McBreen, J., J. Phys. Chem. B, 1995, vol. 99, p. 4577.

    Article  CAS  Google Scholar 

  5. Paulus, U.A., Wokaun, A., Sherer, G.G., Shmidt, T.J., Stamenkovic, V., Radmilovic, V., Markovich, N.M., and Ross, P.N., J. Phys. Chem. B, 2002, vol. 106, p. 4181.

    Article  CAS  Google Scholar 

  6. Zhang, J., Mo, Y., Vukimirovic, M.B., Klie, R., Sasaki, K., and Adzic, R.R., J. Phys. Chem., 2004, vol. 108, p. 10 955.

    CAS  Google Scholar 

  7. Zhang, J., Vukmirovic, M.B., Xu, Y., Mavrikakis, M., and Adzic, R.R., Angew. Chem., 2005, vol. 44, p. 2132.

    Article  CAS  Google Scholar 

  8. Chatenet, M., Genies, L., Aurousseau, M., Durand, R., and Andolfatto, F., J. Appl. Electrochem., 2002, vol. 32, p. 1131.

    Article  CAS  Google Scholar 

  9. Chatenet, M., Aurousseau, M., Durand, R., and Andolfatto, F., J. Electrochem. Soc., 2003, vol. 150, p. 47.

    Article  Google Scholar 

  10. Zoltowski, P., Drazic, D.M., and Vorkapic, L., J. Appl. Electrochem., 1973, vol. 3, p. 271.

    Article  CAS  Google Scholar 

  11. Brenet, J.P., J. Power Sources, 1979, vol. 4, p. 183.

    Article  CAS  Google Scholar 

  12. Matsuki, K. and Kamada, H., Electrochim. Acta, 1986, vol. 31, p. 13.

    Article  CAS  Google Scholar 

  13. Klapste, B., Vondrak, J., and Velicka, J., Electrochim. Acta, 2002, vol. 47, p. 2365.

    Article  CAS  Google Scholar 

  14. Calegaro, M.L., Lima, F.H.B., and Ticianelli, E.A., J. Power Sources (in press).

  15. Mao, L., Zhang, D., Sotomura, T., Nakatsu, K., Koshiba, N., and Ohaka, T., Electrochim. Acta, 2003, vol. 48, p. 1015.

    Article  CAS  Google Scholar 

  16. Cao, Y.L., Yang, H.X., Ai, X.P., and Xiao, L.F., J. Electroanal. Chem., 2003, vol. 557, p. 127.

    Article  CAS  Google Scholar 

  17. Lima, F.H.B., Giz, M.J., and Ticianelli, E.A., J. Braz. Chem. Soc., 2005, vol. 16, p. 328.

    CAS  Google Scholar 

  18. Lima, F.H.B., Sanchez, C.D., and Ticianelli, E.A., J. Electrochem. Soc., 2005, vol. 152, p. 1466.

    Article  Google Scholar 

  19. Lima, F.H.B., Calegaro, M.L., and Ticianelli, E.A., J. Electroanal. Chem. (in press).

  20. Xiong, L., Kannan, A.M., and Manthiram, A., Electrochem. Commun., 2002, vol. 4, p. 898.

    Article  CAS  Google Scholar 

  21. Suffredini, H., Tricoli, V., Avaca, L.A., and Vatistas, N., Electrochem. Commun., 2004, vol. 6, p. 1025.

    Article  CAS  Google Scholar 

  22. Lamminen, J., Kivisaari, M., Lampinen, M.J., Viitanen, M., and Vuorisalo, J., J. Electrochem. Soc., 1991, vol. 138, p. 905.

    Article  CAS  Google Scholar 

  23. Tang, W., Yang, X., Liu, Z., and Ooi, K., J. Mat. Chem., 2003, vol. 13, p. 2989.

    Article  CAS  Google Scholar 

  24. McBreen, J., O’Grady, W.E., Pandya, K.I., Hoffman, R.W., and Sayers, D.E., Langmuir, 1987, vol. 3, p. 931.

    Article  Google Scholar 

  25. Tolentino, H., Cezar, J.C., Cruz, D.Z., Compagnon-Cailhol, V., Tamura, E., and Alves, M.C., J. Synchr. Radiat., 1998, vol. 5, p. 521.

    Article  CAS  Google Scholar 

  26. Ressler, T., J. Phys. IV, 1997, C2, p. 269.

    Google Scholar 

  27. Pandya, K.I., Hoffman, R.W., McBreen, J., and O’Grady, W.E., J. Electrochem. Soc., 1990, vol. 137, p. 383.

    Article  CAS  Google Scholar 

  28. Van Zon, J.B.A.D., Koningsberger, D.C., Van’t Blik, H.F.J., and Sayers, D.E., J. Chem. Phys., 1985, vol. 82, p. 5742.

    Article  Google Scholar 

  29. Schmidt, T.J., Gasteiger, H.A., Stab, G.D., Urban, P.M., Kolb, D.M., and Behm, R.J., J. Electrochem. Soc., 1998, vol. 145, p. 2354.

    Article  CAS  Google Scholar 

  30. McBreen, J. and Mukerjee, S., J. Electrochem. Soc., 1995, vol. 142, p. 3399.

    Article  CAS  Google Scholar 

  31. Perez, J., Gonzalez, E.R., and Ticianelli, E.A., Electrochim. Acta, 1998, vol. 44, p. 1329.

    Article  CAS  Google Scholar 

  32. Obradovic, M.D., Grgur, B.N., and Vracar, Lj.M., J. Electroanal. Chem., 2003, vol. 548, p. 69.

    Article  CAS  Google Scholar 

  33. Hammer, B. and Norskov, J.K., Surf. Sci., 1995, vol. 343, p. 211.

    Article  CAS  Google Scholar 

  34. Farges, F., Phys. Rev. B: Condens. Matter, 2005, vol. 71, p. 155 109.

    Google Scholar 

  35. Ardizzone, S., Bianch, C.L., and Tirelli, D., Colloids Surf., A, 1998, vol. 134, p. 305.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ticianelli.

Additional information

Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 12, pp. 1417–1426.

Based on the report delivered at the 8th International Frumkin Symposium “Kinetics of the Electrode Processes,” October 18–22, 2005, Moscow.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, F.H.B., Calegaro, M.L. & Ticianelli, E.A. Electrocatalytic activity of dispersed platinum and silver alloys and manganese oxides for the oxygen reduction in alkaline electrolyte. Russ J Electrochem 42, 1283–1290 (2006). https://doi.org/10.1134/S1023193506120032

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193506120032

Key words

Navigation