Skip to main content
Log in

Effect of oxygen vacancies in anodic titanium oxide films on the kinetics of the oxygen electrode reaction

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of oxygen vacancies in the anodic oxide film on passive titanium on the kinetics of the oxygen electrode reaction has been studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Oxide films of different donor density were prepared galvanostatically at various current densities until a potential of 20.0 VSHE was achieved. The semiconductive properties of the oxide films were characterized using EIS and Mott-Schottky analysis, and the thickness was measured using ellipsometry. The film thickness was found to be almost constant at ∼44.7 ± 2.0 nm, but Mott-Schottky analysis of the measured high frequency interracial capacitance showed that the donor (oxygen vacancy) density in the n-type passive film decreased sharply with increasing oxide film formation rate (current density). Passive titanium surfaces covering a wide range of donor density were used as substrates for ascertaining relationships between the rates of oxygen reduction/evolution and the donor density. These studies show that the rates of both reactions are higher for passive films having higher donor densities. Possible explanations include enhancement of the conductivity of the film due to the vacancies facilitating charge transfer and the surface oxygen vacancies acting as catalytic sites for the reactions. The possible involvement of surface oxygen vacancies in the oxygen electrode reaction was explored by determining the kinetic order of the OER with respect to the donor concentration. The kinetic orders were found to be greater than zero, indicating that oxygen vacancies are involved as electrocatalytic reaction centers in both the oxygen evolution and reduction reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henrich, V.E. and Cox, P.A., The Surface Science of Metal Oxides, Cambridge: Cambridge University, 1994.

    Google Scholar 

  2. Beck, T.J., Klust, A., Batzill, M., Diebold, U., Valentin, C.D., and Selloni, A., Phys. Rev. Lett., 2004, vol. 93, p. 36 104.

    Article  CAS  Google Scholar 

  3. Schaub, R., Thostrup, P., Lopez, N., Laegsgaard, E., Stensgaard, I., Norskov, J.K., and Besenbacher, F., Phys. Rev. Lett., 2001, vol. 87, p. 266 104.

    Article  CAS  Google Scholar 

  4. Luczak, F.J. and Landsman, D.A., US Patent, no. 4 677 092, 1987.

  5. Ross, P.N. and Markovic, N., Hydrogen Fuel Cell and Infrastruct. Tech., Fiscal Year 2002 Prog. Rep., p. 429.

  6. Macdonald, D.D., Technical Progress Report for The Fundamental Role of Nanoscale Oxide Films in the Oxidation of Hydrogen and the Reduction of Oxygen on Noble Metal Electrocatalysts, grant no. DE-FG02-01ER15238, 2004.

  7. Gurney, R.W. and Condon, E.U., Phys. Rev. Lett., 1929, vol. 33, p. 127.

    CAS  Google Scholar 

  8. Gurney, R.W., Proc. Roy. Soc., 1931, vol. A134, p. 137.

    CAS  Google Scholar 

  9. Schultze, J.W. and Vetter, K.J., Electrochim. Acta, 1973, vol. 18, p. 889.

    Article  CAS  Google Scholar 

  10. Vetter, K.J. and Schultze, J.W., Ber. Bunsen-Ges. Phys. Chem., 1973, vol. 77, p. 945.

    CAS  Google Scholar 

  11. Henrich, V.E., Prog. Surf. Sci., 1995, vol. 50, p. 77.

    Article  CAS  Google Scholar 

  12. Henrich, V.E. and Cox, P.A., Appl. Surf. Sci., 1993, vol. 72, p. 277.

    Article  CAS  Google Scholar 

  13. Lu, G., Linsebigler, A., and Yates, J.T., J. Phys. Chem., 1994, p. 11733.

  14. Eriksen, S., Naylor, P.D., and Egdell, R.G., Spectrochim. Acta, Part A, 1987, vol. 43, p. 1535.

    Google Scholar 

  15. Gopel, W., Prog. Surf. Sci., 1985, vol. 20, p. 9.

    Article  CAS  Google Scholar 

  16. Smith, J.R., Walsh, F.C., and Clarke, R.L., J. Appl. Electrochem., 1998, vol. 28, p. 1021.

    Article  CAS  Google Scholar 

  17. Ellerbrock, D., Defect Characterization of Titanium Passive Films, Ph.D. Dissertation, Pennsylvania State Univ., University Park, PA, 1998.

    Google Scholar 

  18. Kofstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, New York: Wiley Interscience, 1972.

    Google Scholar 

  19. Balachandran, U. and Eror, N.G., J. Mater. Sci., 1988, vol. 23, p. 2676.

    Article  CAS  Google Scholar 

  20. Millot, F., Blanchin, M.-G., Tetot, R., Marucco, J.-F., Poumellec, B., Picard, C., and Touzelin, B., Prog. Solid State Chem., 1987, vol. 17, p. 263.

    Article  CAS  Google Scholar 

  21. Macdonald, D.D., J. Electrochem. Soc., 1992, vol. 139, p. 3434.

    Article  CAS  Google Scholar 

  22. Macdonald, D.D., Pure Appl. Chem., 1999, vol. 71, p. 951.

    CAS  Google Scholar 

  23. James, W.J. and Straumanis, M.E., in Encyclopedia of Electrochemistry of the Elements, New York: Marcel Dckker, 1976.

    Google Scholar 

  24. Morrison, S.R., in Electrochemistry at Semiconductor and Oxidized Metal Electrodes, 1980.

  25. Houlihan, J.F. and Mulay, L.N., Phys. Status Solidi B, 1974, vol. 61, p. 647.

    CAS  Google Scholar 

  26. Leitner, K., Schultze, J.W., and Slimming, U., J. Electrochem. Soc., 1986, vol. 133, p. 1561.

    Article  CAS  Google Scholar 

  27. Marsh, J. and Gorse, D., Electrochim. Acta, 1998, vol. 43, p. 659.

    Article  CAS  Google Scholar 

  28. Kudelka, S., Michaelis, A., and Schultze, J.W., Ber. Bunsen-Ges. Phys. Chem., 1995, vol. 99, p. 1020.

    CAS  Google Scholar 

  29. Sikora, J., Sikora, E., and Macdonald, D.D., Electrochim. Acta, 2000, vol. 45, p. 1875.

    Article  CAS  Google Scholar 

  30. Torresi, R.M., Camara, O.R., Pauli, C.P.D., and Giordano, M.C., Electrochim. Acta, 1987, vol. 32, p. 1291.

    Article  CAS  Google Scholar 

  31. Blackwookand, D.J. and Peter, L.M., Electrochim. Acta, 1989, vol. 34, p. 1505.

    Article  Google Scholar 

  32. Ohtsuka, T. and Otsuki, T., Corros. Sci., 1998, vol. 40, p. 951.

    Article  CAS  Google Scholar 

  33. Moffat, T.P., Yang, H., Fan, F.-R.F., and Bard, A.J., J. Electrochem. Soc., 1992, vol. 139, p. 3158.

    Article  CAS  Google Scholar 

  34. Torresi, R.M., Camara, O.R., and Pauli, C.P.D., Electrochim. Acta, 1987, vol. 32, p. 1357.

    Article  CAS  Google Scholar 

  35. Baez, V.B., Graves, J.E., and Pletcher, D., J. Electroanal. Chem., 1992, vol. 340, p. 273.

    Article  CAS  Google Scholar 

  36. Ai, J., Chen, Y., Urquidi-Macdonald, M., and Macdonald, D.D., Private communication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Macdonald.

Additional information

This paper was submitted in honor of the many contributions to electrochemistry that have been made by Professor Boris Grafov.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roh, B., Macdonald, D.D. Effect of oxygen vacancies in anodic titanium oxide films on the kinetics of the oxygen electrode reaction. Russ J Electrochem 43, 125–135 (2007). https://doi.org/10.1134/S1023193507020012

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193507020012

Key words

Navigation