Skip to main content
Log in

Hopping charge transport in organic materials

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

General properties of the transport of charge carriers (electrons and holes) in disordered organic materials are discussed. It was demonstrated that the dominant part of the total energetic disorder in organic material is usually provided by the electrostatic disorder, generated by randomly located and oriented dipoles and quadrupoles. For this reason this disorder is strongly spatially correlated. Spatial correlation directly governs the field dependence of the carrier drift mobility. Shape of the current transients, which is of primary importance for a correct determination of the carrier mobility, is considered. A notable feature of the electro-static disorder is its modification in the vicinity of the electrode, and this modification takes place without modification of the structure of the material. It is shown how this phenomenon affects characteristics of the charge injection. We consider also effect of inter-charge interaction on charge transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klauk, H., Ed., Organic Electronics, Berlin: Wiley-VCH, 2006, p. 428.

    Google Scholar 

  2. Brabec, C., Scherf, U., and Dyakonov, V., Eds., Organic Photovoltaics, Berlin: Wiley-VCH, 2008, p 575.

    Google Scholar 

  3. Bernards, D.A., Owens, R.M., and Malliaras, G.G., Eds., Organic Semiconductors in Sensor Applications, Berlin: Springer, 2008, p. 290.

    Book  Google Scholar 

  4. Borsenberger, P.M. and Weiss, D.S., Organic Photoreceptors for Xerography, Boca Raton: CRC Press, 1998, p. 799.

    Google Scholar 

  5. Shklovskii, B. and Efros, A., Electronic Properties of Doped Semiconductors, Berlin: Springer, 1984, p. 456.

    Google Scholar 

  6. Bässler, H., Phys. Status Solidi B, 1993, vol. 175, p. 15.

    Article  Google Scholar 

  7. Miller, A. and Abrahams, E., Phys. Rev., 1960, vol. 120, p. 745.

    Article  CAS  Google Scholar 

  8. Pasveer, W.F., Cottaar, J., Tanase, G., Coehoorn, R., Bobbert, P.A., Blom, P.W.M., de Leeuw, D.M., and Michels, M.A.J., Phys. Rev. Lett., 2005, vol. 94, 206601.

    Article  CAS  Google Scholar 

  9. Pope, M. and Swenberg, C.E., Electronic Processes in Organic Crystals and Polymers, New York: OUP, 1999, p. 1328.

    Google Scholar 

  10. Arkhipov, V.I. and Adriaenssens, G.J., J. Phys. Condens. Matter., 1996, vol. 8, p. 7909.

    Article  CAS  Google Scholar 

  11. Dieckmann, A., Bässler, H., and Borsenberger, P.M., J. Chem. Phys., 1993, vol. 99, p. 8136.

    Article  CAS  Google Scholar 

  12. Novikov, S.V. and Vannikov, A.V., JETP, 1994, vol. 106, p. 877.

    CAS  Google Scholar 

  13. Schein, L.B., Rosenberg, A., and Rice, S.L., J. Appl. Phys., 1986, vol. 60, p. 4287.

    Article  CAS  Google Scholar 

  14. Borsenberger, P.M., Magin, E.H., van der Auweraer, M., and de Schyver, F.C., Phys. Status Solidi A, 1993, vol. 140, p. 9.

    Article  CAS  Google Scholar 

  15. Schein, L. and Borsenberger, P., Chem. Phys., 1993, vol. 177, p. 773.

    Article  CAS  Google Scholar 

  16. Gill, W.D., J. Appl. Phys., 1972, vol. 43, p. 5033.

    Article  Google Scholar 

  17. Novikov, S.V., Phys. Status Solidi C, 2011, vol. 8, p. 1.

    Article  Google Scholar 

  18. Schein, L.B., Peled, A., and Glatz, D., J. Appl. Phys., 1989, vol. 66, p. 686.

    Article  CAS  Google Scholar 

  19. Novikov, S.V. and Vannikov, A.V., J. Phys. Chem., 1995, vol. 99, p. 14573.

    Article  CAS  Google Scholar 

  20. Novikov, S.V., Dunlap, D.H., and Kenkre, V.M., Proc. SPIE, 1998, vol. 3471, p. 181.

    Article  CAS  Google Scholar 

  21. Dunlap, D.H. and Novikov, S.V., Proc. SPIE, 1997, vol. 3144, p. 80.

    CAS  Google Scholar 

  22. Novikov, S.V. and Van der Auweraer, M., Phys. Rev. E, 2009, vol. 79, 041139.

    Article  CAS  Google Scholar 

  23. Novikov, S.V., AIP Conf. Proc., 2011, vol. 1332, p. 241.

    Article  Google Scholar 

  24. Dunlap, D.H., Kenkre, V.M., and Parris, P.E., J. Imaging Sci. Tech., 1999, vol. 43, p. 437.

    CAS  Google Scholar 

  25. Dunlap, D.H., Parris, P.E., and Kenkre, V.M., Phys. Rev. Lett., 1996, vol. 77, p. 542.

    Article  CAS  Google Scholar 

  26. Parris, P.E., Kus, M., Dunlap, D.H., and Kenkre, V.M., Phys. Rev. E, 1997, vol. 56, p. 5295.

    Article  CAS  Google Scholar 

  27. Novikov, S.V., Dunlap, D.H., Kenkre, V.M., Parris, P.E., and Vannikov, A.V., Phys. Rev. Lett., 1998, vol. 81, p. 4472.

    Article  CAS  Google Scholar 

  28. Novikov, S.V. and Vannikov, A.V., J. Phys. Chem. C, 2009, vol. 113, p. 2532.

    Article  CAS  Google Scholar 

  29. Novikov, S.V. and Vannikov, A.V., Mol. Cryst. Liq. Cryst., 2001, vol. 361, p. 89.

    Article  CAS  Google Scholar 

  30. Novikov, S.V., Annalen der Physik, 2009, vol. 18, p. 954.

    Article  CAS  Google Scholar 

  31. Novikov, S.V. and Malliaras, G.G., Phys. Status Solidi B, 2006, vol. 243, p. 387.

    Article  CAS  Google Scholar 

  32. Baranovskii, S., Thomas, P., and Adriaenssens, G., J. Non-Cryst. Solids., 1995, vol. 190, p. 283.

    Article  CAS  Google Scholar 

  33. Baranovskii, S.D., Faber, T., Hensel, F., and Thomas, P., J. Phys. Condens. Matter., 1997, vol. 9, p. 2699.

    Article  CAS  Google Scholar 

  34. Arkhipov, V.L., Wolf, U., and Bassler, H., Phys. Rev. B, 1999, vol. 59, p. 7514.

    Article  CAS  Google Scholar 

  35. Borsenberger, P., Gruenbaum, W., and Magin, E., Physica B, 1996, vol. 228, p. 226.

    Article  CAS  Google Scholar 

  36. Borsenberger, P.M., Gruenbaum, W.T., and Magin, E.H., Phys. Status Solidi B, 1995, vol. 190, p. 555.

    Article  CAS  Google Scholar 

  37. Sinicropi, J., Cowdery-Corvan, J., Magin, E., and Borsenberger, P., Chem. Phys., 1997, vol. 218, p. 331.

    Article  CAS  Google Scholar 

  38. Heun, S. and Borsenberger, P.M., Chem. Phys., 1995, vol. 200, p. 245.

    Article  CAS  Google Scholar 

  39. Tyutnev, A.P., Kundina, Yu.F., Saenko V.S., and Pozhidaev, E.D., Polym. Sci. B, 2002, vol. 44, p. 77.

    Google Scholar 

  40. Novikov, S.V. and Vannikov, A.V., Polym. Sci. B, 2002, vol. 44, p. 86.

    Google Scholar 

  41. Stolka, M., Yanus, J.F., and Pat, D.M., J. Phys. Chem., 1984, vol. 88, p. 4707.

    Article  CAS  Google Scholar 

  42. Scher, H. and Montroll, E.W., Phys. Rev. B, 1975, vol. 12, p. 2455.

    Article  CAS  Google Scholar 

  43. Novikov, S., J. Imaging Sci. Tech., 1999, vol. 43, p. 444.

    CAS  Google Scholar 

  44. Yuh, H.J. and Stolka, M., Philos. Mag. B, 1988, vol. 58, p. 539.

    Article  CAS  Google Scholar 

  45. Borsenberger, P.M. and Bässler, H., J. Appl. Phys., 1994, vol. 75, p. 967.

    Article  CAS  Google Scholar 

  46. Hirao, A., Nishizawa, H., and Sugiuchi, M., Phys. Rev. Lett., 1995, vol. 75, p. 1787.

    Article  CAS  Google Scholar 

  47. Hirao, A. and Nishizawa, H., Phys. Rev. B, 1996, vol. 54, p. 4755.

    Article  CAS  Google Scholar 

  48. Schein, L.B., Scott, J.C, Pautmeier, L.T., and Young, R.H., Mol. Cryst. Liq. Cryst., 1993, vol. 228, p. 175.

    Article  CAS  Google Scholar 

  49. Bouchaud, J. P. and Georges, A., Phys. Rep., 1990, vol. 195, p. 127.

    Article  Google Scholar 

  50. Parris, P.E., Dunlap, D.H., and Kenkre, V.M., J. Polymer Sci. B, 1997, vol. 35, p. 2803.

    Article  CAS  Google Scholar 

  51. Novikov, S.V. and Malliaras, G.G., Phys. Status Solidi B, 2006, vol. 243, p. 391.

    Article  CAS  Google Scholar 

  52. Novikov, S.V. and Malliaras, G.G., Phys. Rev. B, 2006, vol. 73, 033308.

    Article  Google Scholar 

  53. Novikov, S.V., Annalen der Physik., 2009, vol. 18, p. 949.

    Article  CAS  Google Scholar 

  54. Tutis, E., Batistic, I., and Berner, D., Phys. Rev. B, 2004, vol. 70, 161202.

  55. Yu, Z.G., Smith, D.L., Saxena, A., Martin, R.L., and Bishop, A.R., Phys. Rev. Lett., 2000, vol. 84, p. 721.

    Article  CAS  Google Scholar 

  56. Zhou, J., Zhou, Y.C., Zhao, J.M., Wu, C.Q., Ding, X.M., and Hou, X.Y., Phys. Rev. B, 2007, vol. 75, 153201.

    Article  Google Scholar 

  57. Novikov, S.V., Phys. Status Solidi B, 2003, vol. 236, p. 119.

    Article  CAS  Google Scholar 

  58. Novikov, S.V., Russ. J. Electrochem., 2002, vol. 38, p. 165.

    Article  CAS  Google Scholar 

  59. Novikov, S.V., Phys. Status Solidi C, 2008, vol. 5, p. 740.

    Article  CAS  Google Scholar 

  60. Horowitz, G., J. Mater. Res., 2004, vol. 19, p. 1946.

    Article  CAS  Google Scholar 

  61. Sirringhaus, H., Adv. Mater., 2005, vol. 17, p. 2411.

    Article  CAS  Google Scholar 

  62. Tanase, C., Meijer, E.J., Blom, P.W.M., and de Leeuw, D.M., Phys. Rev. Lett., 2003, vol. 91, 216601.

    Article  CAS  Google Scholar 

  63. Chua, L. L., Ho, P., Sirringhaus, H., and Friend, R., Adv. Mater., 2004, vol. 16, p. 1609.

    Article  CAS  Google Scholar 

  64. Veres, J., Ogier, S., Leeming, S., Cupertino, D., and Khaffaf, S.M., Adv. Funct. Mater., 2003, vol. 13, p. 199.

    Article  CAS  Google Scholar 

  65. Veres, J., Ogier, S., Lloyd, G., and de Leeuw, D., Chem. Mater., 2004, vol. 16, p. 4543.

    Article  CAS  Google Scholar 

  66. Qi, F., Schug, K.U., Dupont, S., Doss, A., Bohmer, R., Sillescu, H., Kolshorn, H., and Zimmermann, H., J. Chem. Phys., 2000, vol. 112, p. 9455.

    Article  CAS  Google Scholar 

  67. Senker, J. and Rossler, E., J. Phys. Chem. B, 2002, vol. 106, p. 7592.

    Article  CAS  Google Scholar 

  68. Reichert, D., Kovermann, M., Hunter, N., Hughes, D., Pascui, O., and Belton, P., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 542.

    Article  CAS  Google Scholar 

  69. Bartolotta, A., Carini, G., Carini, G., Di Marco, G., and Tripodo, G., Macromolecules., 2010, vol. 43, p. 4798.

    Article  CAS  Google Scholar 

  70. Kirkpatrick, J., Marcon, V., Nelson, J., Kremer, K., and Andrienko D., Phys. Rev. Lett., 2007, vol. 98, 227402.

    Article  Google Scholar 

  71. Nelson, J., Kwiatkowski, J.J., Kirkpatrick, J., and Frost, J.M., Acc. Chem. Res., 2009, vol. 42, p. 1768.

    Article  CAS  Google Scholar 

  72. Ruhle, V., Kirkpatrick, J., and Andrienko, D., J. Chem. Phys., 2010, vol. 132, 134103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Novikov.

Additional information

Published in Russian in Elektrokhimiya, 2012, Vol. 48, No. 4, pp. 427–441.

Published on the basis of the materials of the IXth International Frumkin Symposium “Materials and Technologies of Electrochemistry of the XXIst Century” (Moscow, October, 2010).

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, S.V. Hopping charge transport in organic materials. Russ J Electrochem 48, 388–400 (2012). https://doi.org/10.1134/S1023193512030081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512030081

Keywords

Navigation