Skip to main content
Log in

Mixed Ionic-Electronic Conductivity of the Fluorite-Type Ce1 – x – yLaxPryO2 – δ Solid Solutions under Reducing Conditions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract—

The electrical conductivity of fluorite-type Ce1 – x – yLaxPryO2 – δ (x = 0.29–0.40, y = 0–0.14) solid solutions was studied over the oxygen partial pressure range from 10–20 to 0.5 atm at 973–1223 K. The (Сe,La)O2 – δ was shown to possess predominant anion conductivity with the oxygen ion transference numbers above 0.99 over the entire temperature range. The decreasing of the oxygen partial pressure leads to an increase in n-type electronic conduction. The data on total conductivity as a function of the oxygen partial pressure varying from 10–8 atm down to 10–20 atm was used to model the electronic and ionic defect formation and transport processes under reductive conditions. The concentrations of point defects and their diffusivities were calculated. The concentration of electrons localized at cerium cations, their mobility and, consequently, the partial n-type electronic conductivity were all found to decrease with the increasing of the dopants concentration. The oxygen-ion conductivity and the oxygen vacancy mobility both decreased with the increasing of the La3+, Pr3+, and Ce3+ cations’ total content. This behavior can be explained by the formation of point-defect clusters comprising Ln3+ and anion vacancies, which becomes more favorable with the addition of Ln3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kharton, V.V., Figueiredo, F.M., Navarro, L., Naumovich, E.N., Kovalevsky, A.V., Yaremchenko, A.A., Viskup, A.P., Carneiro, A., Marques, F.M.B., and Frade, J.R., Ceria-based materials for solid oxide fuel cells, J. Mater. Sci., 2001, vol. 36, p. 1105.

    Article  CAS  Google Scholar 

  2. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review, J. Solid State Electrochem., 2008, vol. 12, p. 1039.

    Article  CAS  Google Scholar 

  3. Mogensen, M., Sammes, N.M., and Tompsett, G.A., Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ion., 2000, vol. 129, p. 63.

    Article  CAS  Google Scholar 

  4. Elyassi, B., Rajabbeigi, N., Khodadadi, A., Mohajerzadeh, S.S., and Sahimi, M., An yttria-doped ceria-based oxygen sensor with solid-state reference, Sens. Actuators B Chem., 2004, vol. 103, p. 178.

    Article  CAS  Google Scholar 

  5. Trovarelli, A., Catalytic Properties of Ceria and CeO2-Containing Materials, Catal. Rev., 2006, vol. 38, p. 439.

    Article  Google Scholar 

  6. Bernal, S., Blanco, G., Cauqui, M.A., Corchado, M.P., Larese, C., Pintado, J.M., and Rodrıguez-Izquierdo, J.M., Cerium–terbium mixed oxides as alternative components for three-way catalysts: a comparative study of Pt/CeTbOx and Pt/CeO2 model systems, Catal. Today, 1999, vol. 53, p. 607.

    Article  CAS  Google Scholar 

  7. Zhao, S. and Gorte, R.J., A comparison of ceria and Sm-doped ceria for hydrocarbon oxidation reactions, Appl. Catal. A: Gen., 2004, vol. 277, p 129.

    Article  CAS  Google Scholar 

  8. Shuk, P. and Greenblatt, M., Hydrothermal synthesis and properties of mixed conductors based on Ce1 – xPrxO2 – δ solid solutions, Solid State Ion., 1999, vol. 116,p. 217.

    Article  CAS  Google Scholar 

  9. Wei-ping, G., Rui, Z., and Zhong-sheng, C., Thermodynamic modelling and applications of Ce–La–O phase diagram, Trans. Nonferrous Met. Soc. China, 2011, vol. 21, p. 2671.

    Article  Google Scholar 

  10. Huang, K., Wan, J.-H., and Goodenough, J.B., Increasing Power Density of LSGM-Based Solid Oxide FuelCells Using New Anode Materials, J. Electrochem. Soc., 2001, vol. 148, p. A788.

    Article  CAS  Google Scholar 

  11. Kuritsyna, I., Sinitsyn, V., Melnikov, A., Fedotov, Yu., Tsipis, E., Viskup, A., Bredikhin, S., and Kharton, V., Oxygen exchange, thermochemical expansion and cathodic behavior of perovskite-like Sr0.7Ce0.3MnO3 – δ, Solid State Ion., 2014, vol. 262, p. 349.

    Article  CAS  Google Scholar 

  12. Ivanov, A.I., Zver’kova, I.I., Tsipis, E.V., Bredikhin, S.I., and Kharton, V.V., Stability and Functional Properties of Fluorite-Like Ce0.6 – xLa0.4PrxO2 – δ as Electrode Components for Solid Oxide Fuel Cells, Russ. J. Electrochem., 2020, vol. 56, p. 139.

    Article  CAS  Google Scholar 

  13. Cheng, Sh., Chatzichristodoulou, Ch., Søgaard, M., Kaiser, A., and Hendriksen, P.V., Ionic/Electronic Conductivity, Thermal/Chemical Expansion and Oxygen Permeation in Pr and Gd Co-Doped Ceria PrxGd0.1Ce0.9 – xO1.95 – δ, J. Electrochem. Soc., 2017, vol. 164, p. F1354.

    Article  CAS  Google Scholar 

  14. Shimonosono, T., Hirata, Y., Ehira, Yu., Sameshima, S., Horita, T., and Yokokawa, H., Electronic conductivity measurement of Sm- and La-doped ceria ceramics by Hebb–Wagner method, Solid State Ion., 2004, vol. 174, p. 27.

    Article  CAS  Google Scholar 

  15. Shimonosono, T., Hirata, Y., and Sameshima, S., Electronic Conductivity of La-Doped Ceria Ceramics, J. Am. Ceram. Soc., 2005, vol. 88, p. 2114.

    Article  CAS  Google Scholar 

  16. Xiong, Yu., Yamaji, K., Horita, T., Sakai, N., and Yokokawa, H., Hole and Electron Conductivities of 20 mol %-REO1.5 Doped CeO2 (RE = Yb, Y, Gd, Sm, Nd, La), J. Electrochem. Soc., 2004, vol. 151, p. A407.

    Article  CAS  Google Scholar 

  17. Perez-Coll, D., Aguadero, A., Nunez, P., and Frade, J.R., Mixed transport properties of Ce1 – xSmxO2 – x/2 system under fuel cell operating conditions, Int. J. Hydrog. Energy, 2010, vol. 35, p. 11448.

    Article  CAS  Google Scholar 

  18. Perez-Coll, D., Nunez, P., and Frade, J.R., Effect of samarium content on onset of minor p-type conductivity in ceria-based electrolytes, Int. J. Hydrog. Energy, 2013, vol. 227, p. 145.

    CAS  Google Scholar 

  19. Electron-hole conduction in Pr-doped Ce(Gd)O2 – δ by faradaic efficiency and emf measurements, Electrochim. Acta, 2001, vol. 46, p. 2879.

  20. Ivanov, A.I., Zagitova, A.A., Bredikhin, S.I., and Kharton, V.V., Synthesis and mixed conductivity of Ce1 – x yLaxPryO2 – δ for catalytically active interlayers of solid oxide fuel cells, Al’ternativnaya Energetika Ekologiya (in Russian), 2014, no. 20(160), p. 15.

  21. Ivanov, A.I., Kolotygin, V.A., Patrakeev, M.V., Markov, A.A., Bredikhin, S.I., and Kharton, V.V., Electrical Conductivity, Oxygen Nonstoichiometry and Transport Properties of Mixed-Conducting Ce0.6 ‒ xLa0.4PrxO2 – δ, Russ. J. Electrochem., 2018, vol. 54, p. 486.

    Article  CAS  Google Scholar 

  22. Lenser, Ch., Gunkel, F., Sohn, Y.J., and Menzler, N.H., Impact of defect chemistry on cathode performance: A case study of Pr-doped ceria, Solid State Ion., 2018, vol. 314, p. 204.

    Article  CAS  Google Scholar 

  23. Bishop, S.R., Stefanik, T.S, and Tuller, H.L., Defects and transport in PrxCe1 – xO2 – δ: Composition trends, J. Mater. Res., 2012, vol. 27, p. 2009.

    Article  CAS  Google Scholar 

  24. Fagg, D.P., Frade, J.R., Kharton, V.V., and Marozau, I.P., The defect chemistry of Ce(Pr, Zr)O2 – δ, J. Solid State Chem., 2006, vol. 179, p. 1469.

    Article  CAS  Google Scholar 

  25. Chatzichristodoulou, C. and Hendriksen, P.V., Oxygen Nonstoichiometry and Defect Chemistry Modeling of Ce0.8Pr0.2O2 – δ, J. Electrochem. Soc., 2010, vol. 157, p. B481.

    Article  CAS  Google Scholar 

  26. Bishop, S.R., Marrocchelli, D., Chatzichristodoulou, C., Perry, N.H., Mogensen, M.B., Tuller, H.L., and Wachsman, E.D., Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices, Annu. Rev. Mater. Res., 2014, vol. 44, p. 205.

    Article  CAS  Google Scholar 

  27. Zamudio-García, J., Porras-Vázquez, J.M., Canales-Vázquez, J., Cabeza, A., Losilla, E.R., and Marrero-López, D., Relationship between the Structure and Transport Properties in the Ce1 – xLaxO2 – x/2 System, Inorg. Chem., 2019, vol. 58, p. 9368.

    Article  Google Scholar 

  28. Patrakeev, M.V., Mitberg, E.B., Lakhtin, A.A., Leonidov, I.A., Kozhevnikov, V.L., Kharton, V.V., Avdeev, M., and Marques, F.M.B., Oxygen Nonstoichiometry, Conductivity, and Seebeck Coefficient of La0.3Sr0.7Fe1 – xGaxO2.65 + δ Perovskites, J. Solid State Chem., 2002, vol. 167, p. 203.

    Article  CAS  Google Scholar 

  29. Kharton, V.V. and Marques, F.M.B., Interfacial effects in electrochemical cells for oxygen ionic conduction measurements I. The e. m. f. method, Solid State Ion., 2001, vol. 140, p. 381.

    Article  CAS  Google Scholar 

  30. Wang, Sh., Kobayashi, T., Dokiya, M., and Hashimoto, T., Electrical and Ionic Conductivity of Gd-Doped Ceria, J. Electrochem. Soc., 2000, vol. 147, p. 3606.

    Article  CAS  Google Scholar 

  31. Mogensen, M., Lindegaard, Th., and Hansen, U.R., Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2, J. Electrochem. Soc., 1994, vol. 141, p. 2122.

    Article  CAS  Google Scholar 

  32. Yahiro, H., Eguchi, Y., Eguchi, K., and Arai, H., Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, J. Appl. Electrochem., 1988, vol. 18, p. 527.

    Article  CAS  Google Scholar 

  33. Pérez-Coll, D., Marrero-López, D., Ruiz-Morales, J.C., Núnez, P., Abrantes, J.C.C., and Frade, J.R., Reducibility of Ce1 – xGdxO2 – δ in prospective working conditions, J. Power Sources, 2007, vol. 173, p. 291.

    Article  Google Scholar 

  34. Schneider, D., Godickemeier, M., and Gauckler, L.J., Nonstoichiometry and Defect Chemistry of Ceria Solid Solutions, J. Electroceram., 1997, vol. 2, p. 165.

    Google Scholar 

  35. Chebotin, V.N., Fizicheskaya khimiya tverdogo tela, Moscow: Khimiya (in Russian), 1982.

    Google Scholar 

  36. Kharton, V.V., Yaremchenko, A.Ya., Naumovich, E.N., and Marques, F.M.B., Research on the electrochemistry of oxygen ion conductors in the former Soviet Union, III. HfO2-, CeO2- and ThO2-based oxides, J. Solid State Electrochem., 2000, vol. 4, p. 243.

    Article  CAS  Google Scholar 

  37. Steele, B.C.H., Appraisal of Ce1 – yGdyO2 – y/2 electrolytes for IT-SOFC operation at 500°C, Solid State Ion., 2000, vol. 129, p. 95.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Russian Science Foundation (RSF) grant 17-79-30071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ivanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Published based on the materials of the VII All-Russian Conference with International Participation “Fuel Cells and Power Plants Based on Them”, Chernogolovka, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.I., Bredikhin, S.I. & Kharton, V.V. Mixed Ionic-Electronic Conductivity of the Fluorite-Type Ce1 – x – yLaxPryO2 – δ Solid Solutions under Reducing Conditions. Russ J Electrochem 58, 122–130 (2022). https://doi.org/10.1134/S1023193522020045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522020045

Keywords:

Navigation