Skip to main content
Log in

Filament formation beyond linear focus during femtosecond laser pulse propagation in air

  • Nonlinear Optics
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The threshold relation between the strength of laser beam focusing and its peak power is determined for post-focal filamentation on the basis of the experimental data and numerical simulations. The dynamics of the post-focal filamentation can vary (propagating or reconstruction type) depending on the strength of linear beam focusing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selfocusing: Past and Present, Ed. by Y. R. Shen, R. W. Boyd, and S. G. Lukishova (Springer-Verlag, Berlin, 2009).

    Google Scholar 

  2. L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort Filaments of Light in Weakly Ionized, Optically Transparent Media,” Rep. Prog. Phys. 70, 1633–1713 (2007).

    Article  ADS  Google Scholar 

  3. N. F. Pilipetskii and A. R. Rustamov, “Observations of Self-Focusing of Light in Liquids,” Pis’ma v ZhETF 2(2), 88–90 (1965).

    Google Scholar 

  4. V. V. Korobkin and A. J. Alcock, “Self-Focusing Effects Associated with Laser-Induced Air Breakdown,” Phys. Rev. Lett. 21(20), 1433–1436 (1968).

    Article  ADS  Google Scholar 

  5. G. A. Askar’yan, Kh. A. Dianov, and M. Mukhamadzhanov, “New Experiments on Formation of a Self-Focused Filament from the Beam Focus near the Medium Surface,” Pis’ma V ZhETF 14(8), 452–455 (1971).

    ADS  Google Scholar 

  6. A. Talebpour, S. Petit, and S. L. Chin, “Re-Focusing during the Propagation of a Focused Femtosecond Ti:Sapphire Laser Pulse in Air,” Opt. Commun. 171(4–6), 285–290 (1999).

    Article  ADS  Google Scholar 

  7. J. H. Marburger, “Self-focusing, Theory,” Prog. Quant. Electron. 4, 35–110 (1975).

    Article  ADS  Google Scholar 

  8. A. A. Zemlyanov, “Nonlinear Propagation of Laser Beams through the Atmosphere,” Atmos. Ocean. Opt. 8(1–2), 44–57 (1995).

    Google Scholar 

  9. Zuev, V.E., Zemlyanov, A.A., and Kopytin, Yu.D., Nonlinear Optics of Atmosphere (Gidrometeoizdat, Leningrad, 1989).

    Google Scholar 

  10. S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, “Averaged Description of Wave Beams in Linear and Nonlinear Media,” Izv. Vuzov. Radiofiz. 14(9) 1353–1363 (1971).

    Google Scholar 

  11. V. P. Kandidov, S. A. Shlenov, E. P. Silaeva, and A. A. Dergachev, “Filamentation of High-Power Femtosecond Laser Radiation in Air and Its Applications in Atmospheric Optics,” Opt. Atmos. Okeana 23(10), 873–884 (2010).

    Google Scholar 

  12. A. Couairon and A. Myzyrowicz, “Femtosecond Filamentation in Transparent Media,” Phys. Reports 441(2–4), 47–189 (2007).

    Article  ADS  Google Scholar 

  13. M. Kolesik and J. V. Moloney, “Nonlinear Optical Pulse Propagation Simulation: From Maxwell’s to Unidirectional Equations,” Phys. Rev., E 70(3), 036604 (2004).

    Article  ADS  Google Scholar 

  14. P. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of Intense Short Laser Pulses in the Atmosphere,” Phys. Rev., E 66, 046418 (2002).

    Article  ADS  Google Scholar 

  15. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of Atoms in Alternating Electric Field,” Zh. Eksperim. Teor. Fiz. 50(5), 1393–1397 (1966).

    Google Scholar 

  16. A. A. Zemlyanov, A. D. Bulygin, and Yu. E. Geints, “Diffraction Optics of a Light Filament Generated during Self-Focusing of a Femtosecond Laser Pulse in Air,” Atmos. Ocean. Opt. 25(2), 97–106 (2011).

    Article  Google Scholar 

  17. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic Spatial Replenishment of Femtosecond Pulses Propagating in Air,” Opt. Lett. 23(5), 382–384 (1998).

    Article  ADS  Google Scholar 

  18. Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and A. N. Stepanov, “Self-Action of Tightly Focused Femtosecond Laser Radiation in Air in a Filamentation Regime: Laboratory and Numerical Experiments,” Atmos. Ocean. Opt. 22(2), 150–157 (2009).

    Article  Google Scholar 

  19. A. A. Zemlyanov and Yu. E. Geints, “Evolution of Effective Characteristics of Laser Beam of Femtosecond Duration upon Self-Action in a Gas Medium,” Opt. and Spectrosc. 104(5), 772–783 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.E. Geints, A.A. Zemlyanov, A.M. Kabanov, G.G. Matvienko, A.N. Stepanov, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geints, Y.E., Zemlyanov, A.A., Kabanov, A.M. et al. Filament formation beyond linear focus during femtosecond laser pulse propagation in air. Atmos Ocean Opt 26, 96–103 (2013). https://doi.org/10.1134/S1024856013020097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856013020097

Keywords

Navigation