Skip to main content
Log in

Aerosol lidar for continuous atmospheric monitoring

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A design is proposed of an eye-safe high spectral resolution lidar operating at a wavelength of 532 nm. Absolute calibration is ensured by a molecular channel where aerosol signals are filtered in an iodine-filled cell. Laser beam expansion in a transmitter via a receiving telescope ensures high thermo-mechanical stability of the design, which allows a small field-of-view and substantial reduction of the background noise level. A detailed optical circuit of the transceiver is shown, where the transmitter and the receiver are located on different sides of the optical bench for better stability. Specifications of the laser and the system are given. Lidar returns are calculated, and measurement errors are estimated. It is shown that the time of averaging should be no longer than 1 min to attain 10% accuracy when calculating the aerosol backscattering coefficient and optical depth in the troposphere. The system proposed is to operate continuously and unattended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Measures, Laser Remote Sensing (Krieger Publishing Company, Florida, 1992).

    Google Scholar 

  2. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Ed. by C. Weitkamp (Shpringer, Berlin, 2005).

    Google Scholar 

  3. J. D. Spinhirne, “Micro Pulse Lidar,” IEEE Trans. Geosci. Remote Sens. 31(1), 48–55 (1993).

    Article  ADS  Google Scholar 

  4. S. A. Stewart, E. J. Welton, and T. A. Berkoff, “Solutions to Overlap Temperature Sensitivity in Micro Pulse Lidars,” in Proc. of the 25th Int. Laser Radar Conference, July 5–9, 2010, St. Petersburg, Russia, p. 907–910.

  5. http://www.sesi-md.com/miro-pulse-lidar.html

  6. V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-IEEE, 2004).

    Book  Google Scholar 

  7. Yu. S. Balin, B. V. Kaul’, and G. P. Kokhanenko, “Observations of Specularly Reflective Particles and Layers in Crystal Clouds,” Opt. Atmosf. Okeana 24(4), 293–299 (2011).

    Google Scholar 

  8. A. Young, “Rayleigh Scattering,” Appl. Opt. 20, 533–535 (1981).

    Article  ADS  Google Scholar 

  9. Yu. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime Operation of a Pure Rotational Raman Lidar by Use of a Fabry-Perot Interferometer,” Appl. Opt. 44(17), 3593–3603 (2005).

    Article  ADS  Google Scholar 

  10. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Tauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High Spectral Resolution Lidar to Measure Optical Scattering Properties of Atmospheric Aerosols. 1. Theory and Instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).

    Article  ADS  Google Scholar 

  11. G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nature Phys. Sci. 229, 78–79 (1971).

    ADS  Google Scholar 

  12. P. Piironen and E. W. Eloranta, “Demonstration of a High-Spectral-Resolution Lidar Based on an Iodine Absorption Filter,” Opt. Lett. 19(3), 234–236 (1994).

    Article  ADS  Google Scholar 

  13. J. Harms, W. Lahmann, and C. Weitkamp, “Geometrical Compression of Lidar Return Signals,” Appl. Opt. 17(7), 1131–1135 (1978).

    Article  ADS  Google Scholar 

  14. D. D. Maksutov, Astronomical Optics (Nauka, Leningrad, 1979), 2nd ed. [in Russian].

    Google Scholar 

  15. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, Wayne Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne High Spectral Resolution Lidar for Profiling Aerosol Optical Properties,” Appl. Opt. 47(36), 6734–6753 (2008).

    Article  ADS  Google Scholar 

  16. American National Standard Z136. 1-1993.

  17. Z. G. Wang, Ph.D. Dissertation (Virginia Polytechnic Institute and State University, Blacksburg, 1996).

  18. I. A. Razenkov, E. W. Eloranta, J. P. Hedrick, R. E. Holz, R. E. Kuehn, and J. P. Garcia, “A High Spectral Resolution Lidar Designed for Unattended Operation in the Arctic,” in Proc. of the 21st Int. Laser Radar Conference, July 8–12, 2002, Quebec, Canada, p. 57–60.

  19. http://lidar.ssec.wisc.edu

  20. J. N. Forkey, Ph.D. dissertation (Princeton University, 1996).

  21. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High Spectral-Resolution Lidar with Iodine-Vapor Filters: Measurement of Atmospheric-State and Aerosol Profiles,” Appl. Opt. 40(30), 5280–5294 (2001).

    Article  ADS  Google Scholar 

  22. E. W. Eloranta and I. A. Razenkov, “Frequency Locking to the Center of a 532 nm Iodine Absorption Line by Using Stimulated Brillouin Scattering from a Single-Mode Fiber,” Opt. Lett. 31(5), 598–600 (2006).

    Article  ADS  Google Scholar 

  23. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-Energy, High-Power Ytterbium-Doped Q-Switched Fiber Laser,” Opt. Lett. 25(1), 37–39 (2006).

    Article  ADS  Google Scholar 

  24. Shi Wei, E. B. Petersen, and D. T. Nguyen, Yao Zhidong, Arturo Chavez-Pirson, N. Peyghambarian, and Yu. Jirong, “220 μJ Monolithic Single-Frequency Q-Switched Fiber Laser at 2 μm by Using Highly Tm-Doped Germanate Fibers,” Opt. Lett. 36(18), 3575–3577 (2011).

    Article  Google Scholar 

  25. I. A. Razenkov, E. W. Eloranta, and I. I. Razenkov, “Stable Coaxial Lidar Transceiver,” in Proc. of the 25th Int. Laser Radar Conference, July 5–9, 2010, St. Petersburg, Russia, p. 195–198.

  26. I. A. Razenkov, E. W. Eloranta, J. P. Hedrick, and J. P. Garcia, “Arctic High Spectral Resolution Lidar,” Opt. Atmosf. Okeana 25(1), 94–102 (2012).

    Google Scholar 

  27. I. I. Razenkov, E. W. Eloranta, M. Lawson, and J. P. Garcia, “Mobile High Spectral Resolution Lidar,” in Proc. of the 26th Int. Laser Radar Conference, June 25–29, 2012, Porto Heli, Greece.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.A. Razenkov, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razenkov, I.A. Aerosol lidar for continuous atmospheric monitoring. Atmos Ocean Opt 26, 308–319 (2013). https://doi.org/10.1134/S1024856013040118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856013040118

Keywords

Navigation