Skip to main content
Log in

Role of the recoil atom energy in the formation of radiation-induced defects in semiconductors under electron bombardment

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A comparative analysis of the formation of radiation-induced defects in semiconductors (silicon and silicon carbide are used as examples) under bombardment with electrons with energies of 0.9 MeV or higher is carried out. Experimental values of the rate of charge-carrier removal at electron energies of 0.9 MeV are less by an order of magnitude than at higher electron energies (6–9 MeV). The formation cross section for primary radiation defects (Frenkel pairs) in this range is almost energy-independent. It is suggested that the reason for this difference is the influence of the energy of primary knocked-out atoms. As the energy of these atoms increases, first, the average distance between genetically related Frenkel pairs increases, and, as a consequence, the fraction of pairs that are not recombined under bombardment increases. Second, the possibility of forming new, more complex, secondary radiation effects appears as the energy of the primary knocked-out atoms increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Steeds, F. Carosella, G. A. Evans, et al., Mater. Sci. Forum 353–356, 381 (2001).

    Article  Google Scholar 

  2. J. W. Steeds, G. A. Evans, S. Furkert, et al., Diamond Relat. Mater. 11, 1923 (2002).

    Article  Google Scholar 

  3. A. A. Lebedev, V. V. Kozlovski, N. B. Strokan, et al., Semiconductors 36, 1270 (2002).

    Article  Google Scholar 

  4. D. V. Davydov, A. A. Lebedev, V. V. Kozlovski, et al., Phys. B: Condens. Matter 308, 641 (2001).

    Article  Google Scholar 

  5. A. M. Strel’chuk, V. V. Kozlovski, N. S. Savkina, et al., Mater. Sci. Eng. B 61–62, 441 (1999).

    Article  Google Scholar 

  6. V. V. Kozlovski, A. A. Lebedev, V. N. Lomasov, E. V. Bogdanova, and N. V. Seredova, Semiconductors 48, 1006 (2014).

    Article  Google Scholar 

  7. A. Castaldini, A. Cavallini, L. Rigutti, et al., J. Appl. Phys. 98, 053706 (2005).

    Article  Google Scholar 

  8. M. Mikelsen, U. Grossner, J. H. Bleka, et al., Mater. Sci. Forum 600–603, 425 (2009).

    Article  Google Scholar 

  9. T. Wada, K. Yasuda, S. Ikuta, et al., J. Appl. Phys. 48, 2145 (1977).

    Article  Google Scholar 

  10. V. V. Emtsev, A. M. Ivanov, V. V. Kozlovski, et al., Semiconductors 46, 456 (2012).

    Article  Google Scholar 

  11. G. J. Dienes and G. H. Vineyard, Radiation Effects in Solids (Interscience Publishers, New York, 1957).

    Google Scholar 

  12. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  13. G. H. Kinchin and R. S. Pease, Rep. Prog. Phys. 18, 1 (1955).

    Article  Google Scholar 

  14. V. V. Emtsev, G. A. Oganesyan, N. V. Abrosimov, et al., Solid State Phenom. 205–206, 422 (2014).

    Google Scholar 

  15. N. Yu. Arutyunov, M. Elsayed, R. Krause-Rehberg, et al., Solid State Phenom. 205–206, 317 (2014).

    Google Scholar 

  16. A. M. Ivanov, I. N. Il’yashenko, N. B. Strokan, and B. Shmidt, Semiconductors 29, 281 (1995).

    Google Scholar 

  17. V. V. Emtsev, T. V. Mashovets, and V. V. Mikhnovich, Sov. Phys. Semicond. 26, 12 (1992).

    Google Scholar 

  18. Ion Implantation and Beam Processing, Ed. by J. S. Williams and J. M. Poate (Academic Press, Sydney, 1984).

    Google Scholar 

  19. B. Svesson and J. L. Lindstrom, J. Appl. Phys. 72, 5616 (1992).

    Article  Google Scholar 

  20. S. A. Reshanov, S. Beljakowa, B. Zippelius, et al., Mater. Sci. Forum 645–648, 423 (2010).

    Article  Google Scholar 

  21. L. Storasta, J. P. Bergman, E. Janzen, et al., J. Appl. Phys. 96, 4909 (2004).

    Article  Google Scholar 

  22. G. Alfieri, E. V. Monakhov, B. G. Svensson, and A. Hallen, J. Appl. Phys. 98, 113524 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kozlovski.

Additional information

Original Russian Text © V.V. Kozlovski, A.E. Vasil’ev, A.A. Lebedev, 2015, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2015, No. 3, pp. 22–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovski, V.V., Vasil’ev, A.E. & Lebedev, A.A. Role of the recoil atom energy in the formation of radiation-induced defects in semiconductors under electron bombardment. J. Surf. Investig. 9, 231–236 (2015). https://doi.org/10.1134/S1027451015020123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451015020123

Keywords

Navigation