Skip to main content
Log in

Abstract

We develop a concept of the CW proton linac with the parameters of 13 MeV 162.5 MHz 5 mA. This linac designed for compact neutron source DARIA is based on the linac designed for the project BELA. The different linac layouts were considered. The most perspective linac layout includes Radio Frequency Quadrupole (RFQ) and Drift Tube Linac (DTL) sections with 6D beam matching between them. The drift tube linac section has a modular structure and consists of the separated individually phased IH-cavities with beam focusing by quadrupole magnets between the cavities. This DTL structure provides linac compactness, tuning and commissioning “cavity by cavity”. Results of the beam dynamic simulation and radio frequency parameters of the linac cavities are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. A. Pavlov et al., J. Surf. Invest. X-Ray Synchrotron Neutron Tech. (2019; in press).

  2. T. Kulevoy et al., in Proc. 29th Linear Accelerator Conf. (Beijing, China, Sep. 2018). p. 349. https://doi.org/10.18429/JACoW-LINAC2018-TUPO012

  3. L. Weissman et al., J. Instrum. 9, T05004 (2014). https://doi.org/10.1088/1748-0221/9/05/T05004

    Article  CAS  Google Scholar 

  4. P. N. Ostroumov et al., Phys. Rev. ST Accel. Beams 15, 110101 (2012). https://doi.org/10.1103/PhysRevSTAB.15.110101

    Article  CAS  Google Scholar 

  5. E. A. Wadlinger, IEEE Trans. Nucl. Sci., NS-32 (5), 2596 (1985).

    Article  Google Scholar 

  6. I. M. Kapchinskiy, Theory of Linear Resonance Accelerators (Harwood Academic, New York, 1985).

    Google Scholar 

  7. B. I. Bondarev et al., AIP Conf. Proc. 297, 377 (1993). https://doi.org/10.1063/1.45334

    Article  Google Scholar 

  8. DACM Software. http://irfu.cea.fr/Sacm/logiciels/

  9. A. I. Balabin and G. N. Kropachev, in Proc. 4. European Particle Accelerator Conf. (1994), p.1180.

  10. I. M. Kapchinskiy and V. A. Tepliakov, Prib. Tekh. Eksp., No. 2, 19 (1970).

  11. V. Andreev et al., in Proc. 1st International Particle Accelerator Conf. (Kyoto, 23-28 May 2010), p. 801.

  12. V. Koshelev et al., in Proc. 28th Linear Accelerator Conf. (East Lansing, MI, USA, 25–30 Sept. 2016), p. 575. https://doi.org/10.18429/JACoW-LINAC2016-TUPLR050

  13. M. Vretenar, in CAS-CERN Accelerator School: Course on High Power Hadron Machines (Bilbao, Spain, 24 May–2 Jun 2011), p.225. https://doi.org/10.5170/CERN-2013-001.225

Download references

ACKNOWLEDGMENTS

We are grateful to A. Semennikov and D. Selesnev from NRC “Kurchatov Institute”—ITEP.

Funding

This work is supported by Russian Science Foundation (grant no. 19-12-00363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kulevoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropachev, G., Kulevoy, T. & Sitnikov, A. The Proton Linac for Compact Neutron Source Daria. J. Surf. Investig. 13, 1126–1131 (2019). https://doi.org/10.1134/S1027451019060399

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019060399

Keywords:

Navigation